
•

•

..

..

•
•

C" ;/1,1
, ,

THE SEMANTICS OF NONDETERMINISM
by

T.S.E. Maibaum
Research Report CS-77-30

Department of Computer Science
University of Waterloo

Waterloo. Ontario. Canada
Decembe r 1977

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

· -
•

..

"

fi

•

- l -

§O Introduction

One of the most intriguing topics in Mathematical s_emantics in the
--.. _--. -, -/

last few years has been that of non-determinism. Although very few

. existing languages allow non-determinism, the study of such languages is not

without merit. For example, any language which deals with relations as opposed

to functions Ce.g. query languages for relational data bases) must be in sorne

way nondeterministic. In [4 J, Dijkstra has introduced a non-deterministic

language which he claims facilitates the synthesis of programs~ Moreover,

many authours have studied parallelism by using the concept of non-determinism.

Non-determinism means, of course, allowing sorne element of chance

to influence how a computation might proceed. As a first approach, we might

introduce a choice construct "or" into a simple language of recursive

definitions. As in [17 J, these recursive definitions give rise to

evaluation sequences and the application of the evaluation mechanism to a

"program segment" Tl or T2 would result in a random choice to evaluate

either Tl or to evaluate T2.

The relevant domains of interpretation for these recursive

definitions are non-deterministic domains or structures.which are special

instances of a class of domains suggested in [5 J. The elements of this

idea appear in [13 J and [6 J andwere formally pointed out in [8 J,

[9 J. A structure is an element of a restricted class of complete-partially

ordered sets (cpo's). The restriction is a consequence of requiring that we

not only have the usual so-called "computational partial order" (g on data

domains, we also order domains bya so-called "results partial order".

The reasoning behind the choice of this restricted class is

explained as follows: We assume that our machine is equipped with basic

functions which are deterministic (i.e. return at most one output when given

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

•

•

•

"
,

- 2 -

sorne input). The non-determinism results from having a choice construct in

a programming language. Any given execution of a nondeterministic program

P will result in a deterministic computation. However, many different

computations may be executions of P and these computations (call them

Cp) may or may not be comparable using the usual ordering of computations.

The result of executing P could be the output of any of these computations.

Cp' What could be the output of an execution of Pl or P2? The output

could be an output of an execution of Pl or an output of an execution of

P2· Thus (informally) result (Pl ~ P2) = join (result (Pl)' result

(P2)) where join: (sets of results)2 ~ (sets of results). Moreover, even

if the computations of Pl and P2 (on the same input) are not comparable

(using the "computational partial order"), we may be able to show that result

(Pl) approximates result (P2) with respect to the join operation indicated

above.

Another important problem in studying computations is how to

construct function spaces of given domains. For example, if 0 is a cpo,

then [0 ~ 0] is the set of continuous functions from 0 to 0 and is

easily shown to be a cpo. The fact that 0 and [0 ~ 0] have similar

properties as domains is vital in studying deterministic computations.

Since we restrict the class of cpo's we may use in studying nondeterministic

computations, do we also need to restrict the class of functions we allow in

order to maintain these special properties? The answer is of course in the

affirmative: given a structure 0, we let [D,D] be the class of functions

which are continuous with respect to the computational partial or der and

monotonic with respect to the results partial order. This reflects the

intuitive idea that if we give "more" inputs to a nondeterministic proqram,

then we should expect "more" outputs.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

•

•

•

•

•

- 3 -

As to the contents of the paper, in Section l, we out1ine sorne

under1ying mathematica1 ideas. In Section 2, we study the c1ass of

structures and show that there is a universa1 structure; that is, we show

that there is a domain in which nondeterministic programs can be given

meaning symbo1ica11y and that interpretations of this symbo1ic meaning in

other structures are consistent with the meaning of these programs in

these structures. In Section 3, we show that these ideas can be genera1ised

to give definitions of nondeterministic programs of higher type: i.e. non­

deterministic functiona1s.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

