
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

441

Ilto R.H. Halstead, Jr. (Eds.)

Parallel Lisp:
Languages and Systems
USlJapan Workshop on Parallel Lisp
Sendai, Japan, June 5-8, 1989
Proceedings

Foreword by J. McCarthy

Spri nger-Yerlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Editorial Board
D. Bars10w W. Brauer P. 8rinch Hansen D. Gries D. luckham
C. Moler A. Pnueli G. Seegmüller J. S10er N. Wirth

Edltors

Takayasu Ho
Department of Information Engineering

Faculty of Engineering, Tohoku University
Sendai, 980, Japan

Robert H. Halstead, Jr.
Cambridge Research Lab
Digital Equipment Corporation

1 Kendall Square, Building 700
Cambridge, MA 02139, USA

CR Subject Classification (1987): C.1.2, C.4, 0.1.3, 0.3-4

ISBN 3-540-52782-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0·387-52782-6 Sprînger.Veriag New York Berlin Heidelberg

Tr.i.s work is subject to copyright. Ali flghts are reoorved, whether the whola Or part of !he material
is conoarnad, specifically the rights of trall8!ation, reprinting, re·use of illustrations, recitation.
broadcasiing. reproduction on microfilms or in other ways, al'ld storage in data banks. Duplication
ofthis publication or parts thereoi Is only permitted underthe provisions of the German Copyright
Law of Seplember 9, 1965. in ils version of June :24, 1985, and a copyright lee must always he
paid. ViolatiollS fall under the prosecution actofthe German Copyright Law.

© Springer·Ver!ag Berlin Heidelberg 1990
Printe<! in Germany

Ptinting and biMing: Druckhaus Beltz, Hemsbach/Bergstr.
214513140-543210- Printed on acJd·free paper

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Foreword

Since computers were first invented, it has been known that seriai computation has
limits that can be far exceeded by using parallel computation. Even very early comput­
ers used parallelism in carrying out arithmetic operations, and improved hardware has
expanded this kind of parallelism.

The first project to build a parallel computer was probably IIliac 4 proposed by the
early 1960s. It was over-elaborate, the cellular automaton influenced design made it
almost immune to programming, and by the time it was working, it had been over-Iun by
the Cray l, and other ordinary seriai computers with added vector facilities and pipelining.

Parallel computing poses a harsh dilemma for the system designer. The largest num­
ber of arithmetic operations per second is obtained by designs that offer very limited
communication among the processors. If the problem fits such a design, it can run very
fast, but for many kinds of problem, effective parallelism cannot be obtained without
good communication. Designs offering the best communication, e.g. fully shared full­
speed memory, cannot compute as fast as other designs and don't scale easily to very
large numbers of processors. Ingenuity sometimes provides unexpected solutions, but
sometimes it seems that no amount of ingenuity will substitute for shared memory.

The largest numerical computations are those involving partial differential equations.
When these are replaced by difference equations in the most obvious ways, they seem to
lend themselves ta regular arrays of processors. However, as soon as shock waves require
concentrating the computation on dynamically selected parts of space, and radiation
propagates influences at the speed of light, the most obvious grids waste computation.

The idea of queue-based multiprocessing arose in the early 1960s, but support was not
offered for actually implementing it. The idea is that processes can dynamically generate
subprocesses that can be done in parallel, and these snbtasks are put in a queue structure
from which processors take tasks when they become free. On the one hand, queue based
multiprocessing seems to require a shared memory, which is expensive. On the other
hand, it offers straightforward ways of programming almost any kind of problem using
techniques that aren't far from those used in programming for seriaI computers. Moreover,
the programs produced don't depend on the number of processors, which can even change
dynamically. The languages needed are just the usual seriai langnages augmented by a
few constructions for declaring parallelism.

Queue-based multiprocessing is particularly weil suited for symbolic computation,
where the same recursive process may involve data structures of similar structure but
of enormously varied size, and where the data structures are dynamically determined.
Lisp can be made into a parallel langnage in a variety of ways without distorting its
chara.cter. Moreover, many Lisp programs written for serial machines can be made to
take advantage of parallelism of this kind. Putting Lisp programs on parallel machines
based on the idea of a cellular automaton is problematical, and if a solution is found for
a particular program, it is likely to be strongly configuration dependent.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

IV

Projects to build parallel Lisp systems in the form of compilers and interpreters for
existing or announced shared memory multiprocessors began in the middle 1980s and have
proceeded uneventfully. It seems to be a straightforward task whenever the necessary
resources can be assembled and maintained. The initial proposais for paralle! constructs
were similar to each other. In fact my original idea in proposing the workshop reported in
these papers was that it would be a standardization conference, and on the basis of some
experience with the paralle! constructs, a proposai could be made for the incorporation
of parallelism into Common Lisp. Unfortunately, it seems that the field of parallel Lisp
is not quite ready for standardization. l hope standardization will be pursued in a future
meeting.

The present workshop is about the first in which extensive experience in actually
implementing and using the parallel constructs is extensively reported. The approaches
taken are adequately introduced in the Preface.

Il seems to me that both queue-based multi-processing and systems with weaker com­
munication are destined to survive and will be suitable for different kinds of application.
Queue-based multi-procesing will provide general and straightforward facilities of ail kinds
of work, but some kinds of program will compute faster on more specialized systems.

John McCarthy

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Preface

Lisp has been the most popular programming language for artificial intelligence
and symbolic computing. Since the early 1980'8, parallel Lisp languages and parallel
execution of Lisp programs have been studied extensively in response to the needs of AI
applications and progress in parallel architecture. Early parallel Lisp projects resulted
in parallelized Lisp interpreters and data-How models for parallel execution of Lisp
programs. More recentIy, parallel Lisp systems that can execute realistic applications
with "industrial-strength" performance have been developed.

Inspired by two paraltel Lisp languages, Qlisp and Multilisp, paraltel Lisp languages
have been proposed and developed by several research groups in the United States and
Japan. The U.S./Japan Workshop on Paraltel Lisp, held at Tohoku University in Sendai
from June 5-8, 1989, brought together many of these researchers to discuss the tech­
niques and conceptual models underlying their research projects. Significant advances in
sever al areas were reported, notably in high-performance parallel Lisp implementation
techniques and language constructs for speculative computing. The future construct
emerged as the most popular approach for introducing parallelism into Lisp prograrns,
and several advances in defining future to be compatible with other constructs, such
as continuations, were presented.

Workshop participants submitted papers describing their research projects, which
were distributed at the workshop. Based on the presentations and discussions at the
workshop, participants revised their manuscripts and contributed them to this book.
This book is organized into two parts. Part 1 foeuses on parallel Lisp languages and
programming models and Part II foeuses on parallel Lisp systems and architectures.
Contributions in this book are of two kinds: full papers and extended abstraets. Many
participants contributed full papers describing the researc:h they presented at the work­
shop; sorne participants contributed extended abstracts, because the work had already
been published elsewhere or for other reasons. Generally, aIl the contributions concern
how to make parallel computation more practical in Lisp through new approaches to
language semantics, system design, or implernentation techniques. This preface gives a
summary of the workshop activities and the content of the papers included in this book.

The first paper in Part 1 is by Robert Halstead. It gives an overview of current lan­
guage design and implementation ideas for parallel Lisp systems, based on his experience
with the Multilisp language (an extended version of Scheme) and its implernentations.
The paper presents three criteria for judging Scheme extensions for parallel computing:
compatibility with sequential Scheme, invariance of the result when future is intro­
duced into side-effect-free Scheme programs, and modularity. These criteria are used
to evaluate proposed mechanisms for continuations, speculative computing, and excep­
tion handling. The paper aiso discusses several other directions for further research in

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VI

improving the Multilisp language and its implementations. These research topies in­
clucle data types ta facilitate data-parallel computing; techniques to reduce scheduling
casts and enhance localitYi garbage collectionj and taols to assist in the development of
paraUel programs.

The next paper is by Takayasu Ito and Manabu Matsui. It introduces the parallel
Lisp language PaiLisp and its definition in terms of the kernellanguage PaiLisp-Kernel.
It shows how futures, Qlisp's exclusive qlambda closures, and many other concepts cau
be defined in terms of a sm aU set of kernel constructs. The paper also introduces a nove!
interpretation of continuations in a parallellanguage, in which invoking a continuation
alters the flow of control in the task that originaUy captured the continuation, instead
of in the invoking task.

A presentation at the workshop by Morry Katz described another way to define con­
tinuations in a parallellanguage. This work is represented in this book by an extended
abstract by Katz and Daniel Weise and is also discussed in Halstead's paper. The full
paper appears in the 1990 ACM Conference on Lisp and Functional Programming.

A paper by Randy Osborne presents an interesting model for speculative computa­
tion called the sponsor model and gives performance results from an implementation of
this model in M ultilisp. The sponsor model is a modular framework for providing more
control over scheduling than is provided by standard parallel Lisp systems. This control
is usefui in many applications, especially those that involve search. The sponsor model
can also be useful in system contexts where resources must be shared among users, or
wherever a user needs control over groups of subtasks.

James Miller and Barbara Epstein write about copying garbage-collection algorithms
for paraUel Lisp implementations, discussing the issues crucial to achieving good perfor­
mance. Their parallei garbage-collection algorithm supports speculative computation
with the help of a weak pair construct and garbage-collection of irrelevant tasks. Their
approach to speculative computation via implicit reclamation of irrelevant tasks con­
trasts with Osborne's sponsor model, in which irrelevant tasks are identified explicitly
by program commands.

Ron Goldman, Richard Gabriel, and Carol Sexton give an overview of the Qlisp
language, a parallel version of Cornmon Lisp with "industrial-strength" performance.
In addition to futures, Qlisp supports propositional parameters to help limit excessive
pro cess creation and a qlambda construct for monitor-like mutual exclusion. Qlisp also
includes kill-process and catch/throw constructs for killing pro cesses, which is useful
for sorne forms of speculative computation. To reduce the need for programmera to
address synchronization problems explicitly, the paper introduces two new mechanisms:
heavyweight futures and partially, multiply invoked junctions.

At the workshop, Joseph Weening presented an analytical model of the performance
of dynamic partitioning-a technique for reducing the frequency of pro cess creation by
avoiding it when the number of available pro cesses exceeds the number of processors.
Joseph D. Pehoushek reported on a Qlisp implementation using dynamic partitioning
and other methods for reducing pro cess creation costs. Pehoushek and Weening have
contributed a combined paper to this book, presenting both their experimental and an-

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VII

alytical results; experimentally, dynamic partitioning gives performance improvements
of up to a factor of 2 in the Qlisp implementation.

Robert Kessler and Mark Swanson describe Concurrent Scheme, a language for par­
a11el programming on a distributed-memory architecture. The central and novel concept
of Concurrent Scheme is the domain, which is an entity containing mutable data. At
most one thread of execution can be active in each domain at aDy time. A domain
thus enforees mutual exclusion on accesses to its contents in a manner similar to Qlisp's
qlambda or Hoare's monitors. Though threads cannot execute concurrently in the sarne
domain, threacls can execute concurrently in separate domains. Concurrent Scheme has
been prototyped on the BoIt, Beranek, and Newman GP1000 multiprocessor, but is
ultimately targeted for the Hewlett-Packard MayBy architecture.

W. Ludwell Harrison gave a workshop presentation describing techniques used in
Parcel, a system for interprocedural analysis and restructuring of sequential Scheme
programs for parallel execution. Good speedups have been achieved by applying his
parallelizing compiler to several programs, including the Boyer benchmark. A de­
tailed paper about his methods appears in Lisp and Symbolic Computation 2:9/4 (1989,
pp. 179-396). Zahira Ammarguellat presented her work on control-ftow normalization­
simplifying the control flow of Scheme programs to facilitate parallelizing transforma­
tions. A joint paper in this book by Harrison and Ammarguellat gives an overview and
thoughtful critique of Parcel's design. It then' outlines the design principles of Miprac, a
successor to Parcel that extends Parcel's techniques and applies them to a broad range
of procedurallanguages from FORTRAN to Scheme.

A presentation at the workshop by Akinori Yonezawa discussed reBection in the
object-oriented concurrent language ABOLIR. More detail on this subject appears in
a collection of papers edited by Yonezawa-ABCL: An Object-Oriented Concurrent
System (MIT Press, 1990). A brief summary also appears as an extended abstract in
this book.

In his presentation, Etsuya Shibayama discussed optimistic and pessimistic synchro­
nization policies in the context of the "car washing problem." A short article in this book
by Shibayama and Yonezawa gives the highlights; fuller details appear in Yonezawa's
book, ABCL: An Object-Oriented Concurrent System.

Mario Tokoro presented MD-based computing, which introduces notions of "distance"
and "mass" and proposes an approach that models objects as being under the influence
of a computational "gravitational field." He summarizes these ide as in an article in this
book.

Part II of the book, focusing on parallel Lisp systems and architectures, begins
with a paper by Ikuo Takeuchi based on practical experience with TAO, a Lisp dialect
that fuses the procedural, object-oriented, and logic-programming paradigms into one
language. TAO runs on the ELIS Lisp machine and is in production use by many users.
The paper discusses TAO's approaches to process management, sharing Lisp programs
among pro cesses and users, name-space problems associated with symbol packages,
concurrent primitives, and concurrent program debugging. Most of the key primitives
of TAO are implemented in ELIS microcode, leading to good performance, even in
interpreted mode-even a TOP IIP network system was run under the interpreter!

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VIII

A short article by Ken-ichiro Murakami describes the MacELIS multiprocessor, de­
signed ta be compatible with single-processor TAO /ELIS systems. Interprocessor com­
munication i8 supported by an in-core pseudo-network, which uses standard network
protocols ta transmit messages through a shared memory.

An extended abstract by David Kranz, Robert Halstead, and Eric Mohr describes
Mul-T, a parallel Lisp system with "industrial-strength" performance. Mul-T uses an
optimizing compiler ta generate code for an Encore Multimax multiprocessor and offers
real speed-ups over good sequential implementations. Additional information about
Mul-T appears in the ACM SIG PLAN '89 Conference on Programming Language Design
and Implementation and in the paper by Halstead in this book.

Dan Pierson outlines the issues in integrating parallel Lisp systems with modern op­
erating systems. He discusses the application of services provided by the M 3ch and Unix
operating systems to the problems of pro cess management, scheduling, and exception
handling in a Qlisp-based parallel Lisp system.

Hideya Iwasaki gives a brief description of mU tilisp, a parallel dialect of U tilisp (U ni­
versity of Tokyo Interactive Lisp). mUtilisp programs are composed of pro cesses that
communicate by message-passing; shared objects are not supported. An implementation
of mUtilisp that simulates parallelism by time-slicing is available.

A paper by Taiichi Yuasa and Takafumi Kawana describes an experimental parallel
computer (the PMI) and the PMLisp language. The PMI is built around an 8-bit mi­
croprocessor (the Z-80) and a butterfly network for interprocessor communication. It is
a first prototype of 3 massively parallel "P-machine." PMLisp is a Scheme-like language
with explicit constructs for interprocessor communication. Examples are given showing
how to express a shortest-path algorithm and models of various network topologies in
PMLisp.

Hiroshi Yasui, Toshikazu Sakaguchi, Kohichi Kudo, and Nobuyuki Hironishi write
a short article about the EVLIS machine, a multiprocessor composed of EVAL II pro­
cessors. Regulation lists are introduced as a mechanism for controlling the execution
of parallel processes and the performance of the "List-Tarai-4" benchmark (using reg­
ulation lists) on EVLIS is analyzed. A multi-port memory system for EVLIS is also
proposed as a way of increasing performance.

At the workshop, Norihisa Suzuki described the architecture of the TOP-l multi­
processor and an ongoing project on paraUel Cornmon Lisp based on futures. A novel
feature of this Lisp is that it supports the use of futures for expressions that return
multiple values. Plans for the installation of a real-time garbage collector were also
presented. In this book, Suzuki writes about the architecture of TOP-1 and describes
parallel processing research projects that have been performed on it.

Eiichi Goto was invited to the workshop to present his work on high-speed computer
architectures based on Josephson-junction computing and cyclic pipeline architectures.
Such architectures should complement techniques for using parallelism to achieve high­
performance symbolic computing. He gave an interesting talk based on his published
article in IEEE Transactions on Computers (June 1989).

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

IX

In addition ta the formaI presentations, the workshop included three discussion
sessions in which the participants exchanged views on applications, benchmarks, archi­
tectures for parallel Lisp, and the relationships between parallel Lisp and parallel logic
programming. The first two discussion sessions were devoted to informaI discussion of
language design, performance, scheduling, and architecture for parallel Lisp.

Kazunori Ueda began the final discussion session by giving an overview of the GRe
guarded-Horn-clause language for parallellogic programming, developed at the Institute
for New Generation Computer Technologies (ICOT). He a180 explained the relationship
between GHe and KL1, an extension of GHC also developed at ICOT, and discussed
the need for meta-level operations (reflection) in future logic-programming languages.
Akikazu Takeuchi th en commented on the close relationship between futures and logic
variables in parallel logic languages.

Discussion then turned to the question of applications for parallel symbolic comput­
ing. Hiroshi Okuno discussed his experience in parallelizing two large AI systems-the
production-system language OPS-5, and the truth-maintenance system ATMS: these
programs are of the scale that should be available as benchmark programs. W. Ludwell
Harrison commented on the value of the "real" programs in the set of FORTRAN bench­
marks that have been collected at the University of Illinois and suggested that a similar
collection of Lisp benchmarks should be created. Among the benchmarks proposed
by various workshop participants were sorting, the Gabriel Lisp benchmark set, the
Japan Lisp benchmark set, a symbolic algebra system such as REDUCE, N-body sim­
ulations, fast Fourier transforms, robotics, animation, and graphies. At the close of the
workshop, aU agreed that a standard set of realistic benchmarks for parallel symbolic
computing would be very valuable in advancing parallel symbolic computing toward
practical utility and making it easier to compare the merits of different approaches.

Workshop participants had several opportunities for informaI discussion while ab­
sorbing Japanese culture and technology through a series of events outside of the formaI
agenda: two receptions, a J apanese banquet, and a day of "extracurricular activities"
organized by the workshop's hosts. The day of activities included a tour of the "super­
clean room" for VLSI fabrication at Tohoku University (a "Class 0.0001" clean room
where the levei of dust is so low as to be unmeasurable), the Golden Temple at Hiraizumi,
the temples and gardens at Mohtsu-ji, picturesque Matsushima Bay, and another deli­
cious J apanese banquet at Taritsu-an Restaurant overlooking Matsushima Bay.

The papers in this book describe advances in language design and system architec­
ture for parallel Lisp, but few of them discuss theory or applications of realistic size.
In the theoretical domain, we would like to see more work done on the semantics of
parallel Lisp languages. Specifically, a sound semantic understanding of combining fu­
tures (for parallelism) and continuations (for control) would be valuable. Incorporating
speculative computation into such a semantic theory is another important challenge.

Experiments with several small- and medium-sized parallel Lisp applications have
been conducted (see, for example, Section 3 of Halstead's paper), but it will be very

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

x

important to have experience with realistic, large-seaie applications too. We hope that
the availability of parallel Lisp systems with "industria.l-strength" performance will
enable and encourage the development of snch parallel Lisp applications. It is through
experience with snch applications that we will learn how ta make parallel Lisp systems
that are effective for programming in the large as well as in the smali. This in turn is
a vital step to making parallel Lisp a valuable, general-purpose computing technology
for a wide range of users.

The idea of holding a U .S.fJapan workshop on parallel Lisp was first suggested to
one of us (Ito) by John McCarthy in January, 1987. Halstead was recruited as a CQ­

organizer later that year. Dick Gabriel was later recruited to help, and did most of the
organizing work on the U .S. side; unfortunately, he was unable to attend the workshop
itself. We also regret the absence from the workshop of other parallel Lisp researchers
who were unable to attend, and hope to see a11 parallel Lisp researchers united at a
future workshop.

The proposaI to publish this book as part of the Lecture Notes in Computer Science
series was made to Juris Hartmanis (and accepted) in the faH of 1989. We thank him
and aIl of the above people for their vital role in bringing about the workshop and
the publication of this book. We also thank Hans Wossner of Springer-Verlag for his
assistance in this book's publication. Fina11y, we thank aIl those who helped organize,
and participated in, the workshop for their invaluable contributions.

Takayasu lto
Robert H. Halstead, Jr.
Cambridge, Massachusetts
March, 1990

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

XI

PART 1 : Parallel Lisp Languages and Programming Models

New Ideas in Parallel Lisp: Langnage Design, Implementation,
and Programming Toois
R. H. Halstead, Jr.

2

A Parallel Lisp Language PaiLisp and Its Kernel Specification 58

T. Ito and M. Matsui

Continuing Into the Future: On the Interaction of Futures
and First-Class Continuations
M. Katz and D. Weise

Speculative Computation in Multilisp

R. B. Osborne

Garbage Collection in MultiScheme

J. S. Miller and B. S. Epstein

101

103

138

Qlisp: An Interim Report .. 161

R. Goldman, R. P. Gabriel and C. Sexton

Low-Cost Pro cess Creation and Dynamic Partitioning in Qlisp

J. D. Pehoushek and J. S. Weening

182

Concurrent Scheme .. 200

R. R. Kessler and M. R. Swanson

The Design of Automatic Parallelizers for Symbolic and Numeric Programs 235

W. L. Harrison III and Z. Ammarguellat

A Reflective Object Oriented Concurrent Language ABCLIR

A. Yonezawa
254

Optimistic and Pessimistic Synchronization in Distributed Computing 257

E. Shibayama and A. Yonezawa

Toward a New Computing Model for an Open Distributed Environment

M. TokoTO

261

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

XII

PART II : Parallel Lisp Systems and Architectures

Concurrent Programming in TAO - Practice and Experience 271

J. Takeuchi

A Pseudo Network Approach to Inter-pracessor Communica­
tion on a Shared-memory Multi-Processor MacELIS
K. Murakami

300

Mul-T: A High-Performance Parallel Lisp....................................... 306

D. A. Kranz, R. H. Halstead, Jr. and E. Mohr

Integrating Parallel Lisp with Modern UNIX-based Operating Systems

D. L. Pierson

mUtilisp: A Lisp Dialect for PanlJlel Processing

H.lwasaki

PMI and PMLisp: An Experimental Machine and Its Lisp Sys-
tem for Research on MIMD Massively Parallel Computation

T. Yuasa and T. Kawana

Design of the Shared Memory System for Multi-Processor Lisp Ma­
chines and Its Implementation on the EVLIS Machine
H. Yasui, T. Sakaguchi, K. K udo and N. Hironishi

312

316

322

348

TOP-I Multiprocessor Workstation ... 353

N. Suzuki

List of Workshop Participants .. 364

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

