
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

433

W Schrôder-Preikschat
W Zimmer (Eds.)

Progress in Distributed
Operating Systems
and Distributed
Systems Management
European Workshop, Berlin, FRG, April 18/19, 1989
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Editorial Board

D. Barstow W. Brauer P. 8rinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Editors

Wolfgang Schr6der-Preikschat
Wolfgang Zimmer
GMD Research Center for Innovative Computer Systems
and Technology at the Technical Universi1y of Berlin

GMO-FIRST
Hardenbergplatz 2, 0-1000 Berlin 12, FRG

CR Subject Classification (1987): 0.4, C.2

ISBN 3-540-52609~9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-52609-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ail rights are reservad, whather Ihe whole or parI of the malerial
is concerned, specifically the righls oflrartSlallon, reprinting, re-use of illustrations, recilation,
broadcasting, reproduction on microfilms orin otherways. and storage in data banks. Duplicalion
of this publication or parts thereof is only permitted underthe proVlsions of the German Copyright
Law 01 Seplember 9. 1965. in its version 01 June 24. 1985, and ... copyright f",e must always be
paid. Violations fall under the prosecution act oflhe German Copyright Law.

© Springer-Verlag Berlin H",delberg 1990
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/:3140-54:3210 - Printed on acid-frae paper

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Preface

This volume constltutes the proceedings of the first European workshop on
progress in Distribufed Operating Systems and Disfribufed Systems
Management. The purpose of the workshop was ta provide a general
forum for distributed systems researchers. Contributions by weU-known
European research groups, completed by J.H. $a11zer trom Mirs Athena
project 1 were presented and thoroughly discussed during two days.

As the workshop title indicates, special emphasis was p[oced on research
activities in distributed operating systems and management of distributed
systems. whereby the first workshop day was dedicafed ta operating
system research and the second day deatt with management aspects of
distributed systems.

If was not planned ta provide a forum where only concepts, without any
relation to technical project work, could be presentee! or 'business tolks'
eould be given. The fifteen presentations focussed on the illustration of
existing concepts and solutions in distributed systems research and
development, exemplified by a case study analysis of various projects.
Eoch day closed with a panel discussion on the key research directions,
reeent progress and future developments in these areas. The panels were
composed of the presenters of the same day and ehaired by J.H. Saltzer
and A.J. Herbert.

The order of papers included in this volume reflects the order of
presentations given, Ali papers have been carefu!ty reviewed by the
programme committee and the best ones have been selected for
pubt1catlon. The volume annex contains the position papers as prepared
by the authors for the panel discussions.

We would like 10 Ihank 011 Ihe people of GMD FIRST and FOKUS who have
helpee! ta organize the workshop and especiaUy the authors of the
presented papers, wlthout whom thls workshop would not have been such
a success. Special thanks ore dedicated to Rolf Speth of the CEe and to
Alwyn Langsford, the project coordinator of the MANDIS project, for the
financial support of the workshop. Finally we would like ta thank the GMD for
their generous support.

ln the meantime, we have received a very positive echo concerning the
quality of the Berlin workshop. Especia!ty the wide spread of toplcs
handled at the workshop was generally appreciated. This encourages us
to look forward to the second workshop of this kind.

Berlin, March 1990 Wolfgang SchrOder-Preikschat
Wolfgang Zimmer

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

European Workshop on

PROGRESS IN DISTRIBUTED OPERATING SYSTEMS
AND DISTRIBUTED SYSTEMS MANAGEMENT

Supported by the CEC Cost 11 ter Action

Organized and hosted by GMD FIRST and GMD FOKUS Benin

FIRST - Research Center for Innovative Computer Systems and T echnology
FOKUS - Research Center for Open Communication Systems
GMD - German National Reseorch Center for Computer Science

Programme Committee

W. K. Giloi. GMD FIRST (Chair)
B. Butscher, GMD FOKUS
J. Hall, GMD FOKUS
W. Schr6der-Preikschat. GMD FIRST
W. ~mmer, GMD FIRST

Organizing Committee

D. Emons. C. Freytag, Yee-Mei Guo, R. Kallerhoff, D. Koop,
W. Schrôder-Preikschat, C. Schulze. G, Tysper, W. Zimmer
GMD FlRST B

IB
LI

O
TH

E
Q

U
E

 D

U

 C
E

R
IS

T

~~--'"' // ,.1_o.:0"\"
Table of Contents j",: :: >,.,< <'. >

i:' '! ,/ \ \ ,,\\
l" f" "",
,! 1 { ,,~ 1 l, :)

Technical Papel'$ \\ 1",\ ''-:.,/,r.'' ,/
\;;: ,~"---- -~' /1
~~"_r ~/7

The Evolution ofa DistribufedOperafing System """.,""'"".,.,,'''''~~''''''' 1
R. van Renesse, A. S. Tanenboum - Vrije Universiteit Amsterdam,
S. J. Mullender - CWI Amsterdam

AIL - a Closs-oriented RPC Stub Generolor for Amoebo"""""""""""""""""""" 13
G. van Rossum - CWI Amsterdam

PEACE - A Distribufed Operofing System for High-Pedormonce
Mulficomputer Systems ... , " .""" " 22
W. Schroder-Preikschat - GMD FIRST Berlin

Virtual Memory Management in Chorus ,,, "" ... ,_ .. " ",,, . .45
V. Abrossimov, M. Rozier, M. Gien - Chorus Systèmes Paris

15 ObJect OrientatIon a Good Thing for Disfributed Systems? 60
C. Hom - Trlnlty College Dublin

Experiences with a Portable Network Operating System 75
K. Geihs, H. Schmutz - IBM ENC Heidelberg

On the ImplementatIon of Absfract Data Types ln Bir/IX .. 87
W. Lux, H. Hëlrtig, W. Kühnhauser - GMD Birlinghoven

Monitoring and Management-Support of Disfribufed Systems 7 70
D. Haban - ICSI Berkeley, D. Wybranletz - Unlversttât Kaiserslautern,
A Barak - ICSI Berkeley

DAPHNE - Support for Disfributed Compufing in Heferogeneou.
Environments ... 138
K.-P. Lohr, L. Nentwig - Freie Universitëlt Berlin,
J. Müller - Universitât Bremen

Distributed Computing wifh a Processor Bank , 747
J. M. Bacon, 1. M. Leslie, R. M. Needham - University of Cambridge

MANDIS: Management of D/strlbuted Systems 162
D. Holden, A. Langsford - UKAEA Harwell Laborafory

OAI- Concepts for Open Systems Cooperation ... 174
V. Tschammer, K.-P. ECkert, J. Hall, G. Schürmann, l. strick - GMD FOKUS
Berlin

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VI

Annex: Position Papers for the Panel Discussions

R. von Renesse· Vrije Universiteit Amsterdam " "" 793

S. J. MuJlender. G. van Rossum - CWI Amsterdam , .. 195

W. Schrëder-Preikschat - GMD FIRST Berlin ... 196

T. King - Perihelion Software Limited , " ... 197

C. Hom - Tnnity College Dublin .. 198

H. Schmutz - IBM ENC Heidelberg ... 199

H. Hè.':Irtig - GMD Birlinghoven " .. ", ".,.",." " 200

J. Nehmer - Universitât Kaiserslautern , ,,,,, ,, ... , ... 207

J. H. Soltzer- MIT Cambridge .. 202

J. M. Bacon - University of Cambrldge ... 203

A.langsford - UKAEA Harwell Laboratory ... ", ,204

V. Tschammer- GMO FOKUS Berlin .. " 206

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Tbe Evolution of a Distributed Operating System

Robbert van Renes.~e
Andrew S. Tanenbaum

Dept. of Mathematics and Computer Science
Vrije Universîteit

AmsteIdam

Sape J. Mullender

Centre for Mathematics and Computer Science
Amsterdam

AMOEBA is a research project ta build a true distributed operaling system
using the abject model. Under the COSTll-ter MANOIS project this work
was extended to cover wide-area networks. Besides describing the system,
this paper discusses the successive versions in the implementation of its
model, and why the changes were made. Its pnrpose is to prevent ourse1ves
and others from making the same mistakes again. and to illustrate how a dis
tributed operating system grows in sophistication and size.

J. Why This Paper "Those who leam nothing from bis

tory are doomed to Iepeat it" -
Santayana

For about eight years DOW, we have been doing research on distributed operating sys
tems, not only behind our desks, but aIsa behind our tenninals. The distributed system we
are developing is called AMOEBA[l], and it is constandy evolving. It is being developed at
the Vrije Universiteit and the Centre for Mathematics and Computer Science (CWI), both in
Amsterdam. AMOEBA currently runs on Motorola 68020, National Semiconductor 32032,
and MicroVax II processors. Both Ethemet and the Pronet token ring are supponed by
AMOEBA, and can he connected by a bridge.

COSTll-ter MANOIS is an international project investigating the management require
ments for large international networks of computers. It has adopted the abject-model as a
framework within which to discuss the management of wide-area distributed systems. Ta
experiment witb this. the MANOIS project adapted the Amoeba distributed opcrating system,
extended with a gateway for wide-area communication. Amoeba systems in Holland (Vrije
Universiteit, CWI), the U .K, (Harwell Laboratories, Hatfield Polytechnic), in Berlin
(GMD/FOKUS) and in Norway (University of Trom~) have been c01Ulected into a single,
transparent distributed system.

This researclt was supportcd in part by the Netherland.<; Organizadon for Scient:ifi.c Research (N.W,O.)
Wlder grant 125-30-10.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

2

In any system, mistakes can appear in the design: features that are missing, features that
are obsolete. and features tbat are 100 hard to handle. Sometimes the solution needs a consid
erable redesign of the system, and a new version is hom. One bas lo he prepared to redû sys
tems [2-4]. When designing a system, it is important not to maIre mistakes twice, he they
your own, or anyone else's. Therefore it is necessary 10 read about othe! comparable pro
jects. and to document your own.

2. The AMOEBA Architecture Bradley's Bronlldc; "If compll1ers
gel 100 powerful, we can organize
tru."Ill into Il conunluee-that will do
them in"

The AMOEBA architecture consists of four principal components, as shown in Fig. l.
First are the workstations, one per user, which run window management software, and on
which users can carry out cdiring and other tasks that requite fast interactive response [5].
Second are the pool processors, a group of CPUs that can he dynamically allocat.ed as
needed, used, and then retumed ID the pooL For example, the "make" command might need
to do six compilations. so six processors could he taken out of the pool for the time necessary
to do the compilation and then returned. Altematively, with a five-pass compiler. 5 x 6 = 30
processors could he allocated for the six compilations. gaining even more speedup [6].

Third are the spedalized servers, such as dircctory [7], me servers [81. and various other
servers with specialized functions. Fourth are the wide-area network gateways. whicb are
use<! to link AMOEBA systems at different sites in possibly different countries into a single,
unlform system, such as investigated in the MANOIS work [9-13].

Processor Pool

111111111 i

i 111111111

1111111111

1111111111

Workstations

Gateway

f--WAN

Specialized servers
(file, data base, etc)

Fig. 1. The AMOEBA architecture.

AIl the AMOEBA machines run the same kemel, which primarily provides communica
tion services and little eise. The basic idea bebind the kernel was to keep it srnall, not only to
enhance its reliability. but also ta allow as much of the operating systl.'Jll as possible to run as
user processes, providing for flexibility and experi.mentation.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

3

2.1. Transactions

AMOEBA is an object-oriented distrlbuted operating system. Objects are ahstract data
types such as files, directories. processes, and are managed by server processes. A client pro
cess cames out operations on an object by sending a requcst message to the server process
that manages the abject. While the client blocks. the server perfonns the requested operation
on the abject. Afterwards the server sends a reply message back to the client. which
unblocks the client. We have named this request/reply exchange a transaction (not to be
confused with data base transactions) [14, 15]. AMOEBA guarantees at-most-once execution
of transactions. Remote procedure caBs [16. 17] are implemented by collecting a code identi
fying the procedure to be executed and the arguments in a request message, and performing a
transaction with the appropriate servet. The result of the procedure is relrieved from the
reply message.

Mer starting a transaction, a client process blocks to await the reply. A server process
blocks when il 18 awaiting a rcquest. To handle multiple transactions going on at the same
time a pruccss can he subdivided into lightweight subproeesses called threads. By having a
thread for each request. a server proeess ean handlc multiple requests simultaneously. A
client proeess can perfonn severa1 transactions at the same time by having a lhread per trans
action. To avoid race conditions and simplify programming the threads are only reseheduled
when the currently running thread blocks, that is, thread .. are not pre-empted.

2.2. Capabilities

AlI objects in AMOEHA are named and prot.eclcd by capabilities[18, 19]. Capabilities.
combined with transactions, provide a unifonn interface to ail objects in the AMOEBA system.
A capability has 128 bits. and is composed of four fields:

1) The server port: a 48 bit sparse address identifying the server proeess that manages the
object. A server cac choose its own port.

2) The object number: an internai 24-bit identifier that the server uses to tell which of its
objects this is. The server port and the objeet nwnber together uniquely identify an
abject.

3) The rights field: 8 bits telling wruch operations on the abject are pennitted by the holder
of this capability.

4) The check field: a 48-bit number that proteets the eapability against forging and tamper
ing.

When a server is asked ta create an object, it picks an available slot in ils internal tables.
puts the information about the abject ln there as weB as a 48-bit random number. The index
inta the table is used as the object numbcr in the capability. The rights in the capability are
protected by encrypting them together with the random number. and storing the result in the
check field. A capability can he checked by perfonning the encryption operation again, and
comparing the result with the check tield in the capability.

Capabilities can he storcd in directories that are managed by the directory service. A
directory is cffcctively a set of <ASCll string, capability> pairs, and is itsclf just another
object in the AMOEBA system. Directory entries may. of course, contain capabilities for other
directories, and thus an arbitrary naming graph can he bullt. The most conunon directory
operation is to present an ASCII string and ask for the corresponding capability. Other
operations are entering and deletlng directory entries, and listing a directory ln

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

4

3. AMOEBA Incarnations "Experiencc is that IDllfVelous thing

tha!. euables yQU 10 recognlre a mis
take when you make it again" -
P,P. Jones

Ta gel experience with distributed operating systems, and with the abject mode1 in par
ticular, we have built an implementation of the AMOEBA system. This implementation con
sists of a small, highly portable, and efficient kemel. capable of providing local and rcmote
communication. driving peripherals, and running processes; all other services are provided by
user processes. In the following we ooly discuss the kemel.

Working with the flfSt version of AMOEBA, we became awarc of sorne of the deficien
cies in its design. After a wlùle we tluew it away and built a new version. As this version
did Rot solve aU the problems, wc dcsigncd and implemented the third, and eurrent, version.
We are currently designing the fourth version. Bach of these versions are discllssed more or
less independently in the next sections. ln section 4 we will compare them and describe why
the changes were made.

3.1. AMOEBA 1.0

The AMOEBA 1.0 kemei [20] is a simple multiprogramming kemcl, with intta-machine
communication based on software interrupts. It has three laym. The bottom layer catches
aIl hardware interrupts. Each intcrrupt causes a message to be put into a lask queue. Mes
sages may contain parameters. such as the value of a character just received on a communica
tion line. Mostly these are the values of sorne of the deviccs that generated me interrupt.
Furthermore, the layer schedules the kemel tasks, that constitute the middle layer of the ker
nel, and the user processes in the highest layer.

A task takes care of a particular dcvice, for example, a disk or a dock. It is called
whenever there is a message for it on the task queue. A user process is scheduled when therc
are no tasks left ta run, or if the current running process has eaten up its rime sUce. Bath
tasks and processes are able to put sometlring in the lask queue, thus scheduling a task.

Tasks fun to completion. When an interrupt oeeurs, a message is put on the task queue,
and the task is resumed. This means that there are no race conditions in interrupt handling,
and only one run-time staek is needed for all tasks. Tasks can be programmed entirely in a
high-Ievellanguage.

The two most important tasks are the dock task and the network task.. The dock task
simulates multiple timers: it has functions 10 set and cancel timers. The network task pro
vides a network interface that does not guarantec delivery. A user process necds bath ser
vices ta implement a reliable network interface.

A user process can suspend itself, enable or disable eertain messages fram specifie
sources, and send or cancel messages. It invokes a task by sending a message 10 it by placing
an entry in the task queue. The message contains four pardIllctcrs, sueh as the speeifie fune
tian that must be executed by the task. As in the kemeJ, these messages are queued when
arriving inconveniently. When a process is properly enabled, it is informed that a message is
pending by an interrupt.

This way a pTOCess cau call the three functions perfonned by the network task:
get(header, bufferJ, put(header, bufferJ, and unget(header). The header (see Fig. 2) is a 40

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

5

lemrth
destination Dort

rep]y port

signature port

out-of-band dala

Fig. 2. Header fonnat.

byte structure containing the totallength of header and buffer, the destination port, the reply
port, the signature port, and 20 byte out or band data. A port is a nctwork independent
address, chosen from a sparse 48 bit address space, and protected by a cryptographie one-way
function. The signature port can he used for sender authentication.

Get enables receiving, while put sends a packet. Neither are 100% reliable in that
pack.ets may get lost. An interrupt is generated on completion. Unget disables receiving.
The data buffer bas a maximum sUe of 2 Kbytes, enough to contain about two thirds of the
files in an average fIle system.

A user library of procedures uses these primitives, logether with timers. to implement
the transaction interface. A client invokes a service by calling trans(hdr 1, bu!l, hdr2, buf2).
The request is put into hdrl and bu!'; the reply will be put ioto hdr2 and buj2. The server
calls getreq(header, buffer) ta enable receiving of a request, and putrep(header, buffer) 10
send a reply back. ln each of the three calls, an interrupt is generated on completion.

The protocol used is simple, yet makes efficient use of the network bandwidth. Nor
mally the reply acknowledges the request, and the reply is acknowledged by the next request.
Separate acknowledgements are generated only when the reply or the next request is taking
too long. It is possible to have multiple outstanding getreq's, to handle more than one client,
or to have multiple trans's going on, thus enabling parallel programming.

3.2. AMOE8A 2.0

lntra-machine communication in AMOEBA 2.0 is through 26-byte typed messages, called
mini-messages. Whcn a hardware înterrupts occurs, the real-time infonnation is put into a
mini-message and sent ta the appropriate task. The user interface to the tasks is also through
these messages. This kernel has fonned the base for the MINIX operating system [21].

The calls ta send and receive messages are:

send(de.vtination, message);
recv(source, message);
sendrec(destination, mes.~age).

Sene! sends the message ta the specified destination: tasks are identified by negative numbers.
processcs by positive numbers. When the destination is not ready ta receive. the message is
queued. Recv is ca1led when a task or process wants to await a message from the specified
source, which may he ANY. Sendrec is provided for efficiency: it sends the message ta the
destination and awaits a reply message.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

6

A proccss may he inœrrupled by a task or another process with a special interrupt mes
sage. Interrupts go ar most one level deep, to simplify înterrupt handling. Othee messages
t1:utt arrive during interrupt handling are queued as usual.

The services provided by the kemel are the same as in AMOEBA 1.0., inc1uding the c10ck
task and the network task. The transaction mechanism interface to the user processes is
aImast identical. sa existing user servÎces fOf AMOEBA 1.0 are easily ported. Latee the trans
action interface of AMOEBA 3.0, the currently used incarnation of AMOEBA, bas been impIe
mented for MINIX.

3.3. AMQEBA 3.0

In AMOEBA 3.0. aU communication, both intra-machine and inter-machine, is through
transactions. The interface is slightly modified and extended:

getreq(header, buffeT, length);
putrep(header, buffer, length);
trans(hdrl, bufl, lenl, hdr2, blfl2, len2);
newthread(procedure);
thread..exit();
sleep(event);
wakeup(event).

The server, either a kemel task or a user process, calls gelreq 10 await a request message, and
putrep 10 send a reply back, A client process caIls trans to send the œquest in hdr} and bufl,
and 10 await the reply, which will he put into hdr2 and buj2. The header contains the capabil
ity identifying the service and object, and 20 bytes of out of band data containing the corn
mand 10 the server and ilS parameters. The buffer, with a specified length of maximally 30
Kbytes, contains the data associated with the request or the reply.

Note that these caUs are blocking, and prevent parallel computing. To allow concurrent
programming, we introduce threads. a light-weight sub-process. Within a process, only one
thread ean run al a time; another one may he scheduled when the cwrent running thread does
a blocking calI. While some threads are awaiting a request or a reply, anotber thread may
ron, A server that wan!.:!; la he able la service multiple clients will have several identical
tlueads. created with new..thread, capable of executing requests.

The kemel is just another process, having threads (tai'lks) ta drive the peripherals. The
bonom layer in the kemel schedules the threads of ail processes, executes the transactions,
copies local messages, and runs the network protocol. Deviee intennpts are still queued. but
not transfonned inta messages. Instead, interrupt routines are involœd at "save" rimes. that
is. in between thread switches. The network protocol sends separate acknowledgements for
request and reply fragments. and network DMA is doue simultancously with the other sicle as
much as possible. No separate timers are maintained, but a simple, once in a while "sweep"
procedure rcstarts stopped protocols. Ali this results in simple and efficient message passing
[14,15J.

The physical location Qf ports, and thus of servers and objects, is maintained in a cache
peI site, When the location of a port is unknown or out-of-date, it i8 located with a special
broadcast locale message, and the cache 11'1 updated.

Threads witbin a process can synchronize using sIeep and wakeup. A thread that wants
to await an event invokes sIeep; a thrcad that wants to rcsume other threads waiting for a

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

7

certain event caUs wakeup. Since threads fun to the next blocking system call, there is no
danger of race conditions.

Vnder the COST11-ter project AMOEBA 3.0 was extended to wide-area networks using a
special gateway [11, 12]. The gateway manages the wide-area communication without
affecting the local networks. This management includes namîng and protection of objects,
accounting, and fault management of communication. The gateway is high-Ievel: it inter
cepts complete messages, and if acccss is granted, establishes a virtual circuit to the intended
destination to forward the message across. The gateway at the destination site repeats the
transaction, and forwards the reply ovec the same virtual circuit back to the source The gate
way registers aIl remote servers and their locations to know which messages to f01ward and
which not. site.

3A. AMOEBA 4.0

In AMOEBA 4.0 [22] processes are subdivided jnta light-weight threads, but now we no
longer guarantee that threads run unpreempted ID the next blocking system calI. Moreover,
we allow threads to await requests for multiple ports. and to specify message buffers of up to
one Gigabyte. This bas affccted thc user interface as follows:

getreq(port-list, header, buffer, length);
putrep(header, buffer, length);
tran,(hdrl, bufl, lenl, hdr2, buj2, len2);
newJhread(procedure);
threatLexit();
»ULJock(mutex);
muJrylock(mutex, timeout);
mu.J4nlock(mutex).

Note that sleep and wakeup cannat be used as syncbronization primitives anymore, since they
would he fraught with race conditions hecause of the preemptive scheduling of tasks.
mu...1ock and mu.J4nlock respectively acquîre and release a mutex variable. muJrylock tries
10 acquire the lock within timeout milliseconds, and returns an errar if this fails.

An imponant change in this new incarnation of AMOEBA is the fonnat of the capability,
which, as we will see, aIso influences the semantics of trans. 1be new fonnat is sbown in
Fig.3. The sires of the different fields have been Încreased. Moreover, there is an extra field
designating the creation site. ln AMOEBA 4.0 it is assumed that abjects hardly ever migrate
away from the site of their creation. This obsoletes the necessity ta register all remote ser
vices at the gateways, thus decreasing the amount of management necessary considerably.

M M TI TI M #~

1 Service Port Creation Site Object Rights Check

Fig. 3. An AMOEBA 4.0 capability.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

8

4. Compari!iOD "1 have made mistakes but 1 have
never made the mistake of claiming
that 1 never made one" - James
GQrdon Bennett

Having discussed each of the implementations of the abject model more or less indepen
dently, il is DOW time to look what changed and wh)'. The differences concem efficiency and
programmability; these goals are often conflicting. Bath metamorphoses are discussed in the
following sections.

4.1. AMOEBA 1.0 ~ AMOKBA 2.0

Our tint objection against AMOEBA 1.0 was the difficulty in programming with il. AlI
communication with the outside world was through asynchronous messages. Although flexi
ble, it puts us back sorne dccades when programmers had to work al a very law level. The
processes were pelted with interrupts. Bach process had to do its own job scheduling.

Furthennore, the interrupts carried too liule informatioJ1-<)ftcn additional information
had to he transported by a special copying task. In addition to the complexity invoJved., it
was ineffident, and it had protection problems. When data had to he copied hetween lwo
processes, one had to do this, and thus had full access to the address space of the other pro~
cess.

Furtherrnore, debugging was difficult, hecause if was hard to trace a process that can be
interrupted at any moment, and each rime somewhere eIse. Moreover, lnterrupts mlght arrive
in another order when the process was execllted again, and dcbug statements in the code
changed the behaviour. Thus AMOEBA 1.0 processes were nondeterministic, and a fallure
might occur onIy once in a month, making il hard to find the error.

We abolished these problems in AMOEBA 2.0 by abolishing needIess interrupts. AlI

ordinary communication was througb typed mini-messages, and although small, they were
large enough for an average command with parameters or a reply. Messagcs only arrived
when called for, which madc both programming and debugging considerably easier, because
a program could he written in the usual structured way.

4.2. AMOEBA 2.0 -+ M\'IOEBA 3.0

Although happier. we were not completely satisfied with our basis for a distributed
operating system. To begin with, too lîttle concurrency was left in with the new intra
machine communication meçbanism. The receive call was blocking, and it was not possible
to check if there was something in the message queue. Moreover, it was not possible ta give
a set of sources from which to rcccivc a message, so the messages had to he handIed in the
order thcy arrived.

Aiso annoying were the different intra-machine and inter-machine communication
mechanisms. This problem also existed in AMOEBA 1.0. but in AMOEBA 2.0 the mechanisms
are much more alike. Furthennore. to stan a transaction, a mini-message had ta he sent ta
the network task. another to enable reœipt of the acknowledgement, and a third Lo the c10ck
task ta set a timer. When the acknowledgement anived, the timer had to he canceled, which
cost anothcr mîni~message. Ali this made inter~machine communication inefficient.

These problems were solved in AMOEBA 3.0 by maldng the transaction the only com~
munication primitive. Moreover, the messages are much larger, 50 a special task to copy data

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

9

became ohsolete. At the same rime, the protection problem with copying disappeared. Com
munication became transparent, havillg obvious advantages.

Like the mini-message caUs, transaction calls were blocking now. Concurrent program
Ming was made possible through threads: each thread can handle one client and one server.
This way wc have the profit of concurrent programming combîned with the ease of simple.
every-day programming.

4.3. AMOEBA 3.0 -+ AMOEBA 4.0

AMQEBA 3.0 is the fltst incarnation that is heavily used for distributed applications [23-
25], and has led 10 severa! suggestions for improvemcnts. Also, the hardware technology has
improved considerably, making multi-processors more and more interesting. In the tirst
three incarnations wc envisioned only loosely-coupled hardware, but now wc aIsa have lO
deal with processors sharing memory over a shared bus. Yet another factor that makes a new
implementation necessary is the advance of wide-area networks, making large distributed
operating systems interesling.

There are two reasons for preemptive scheduling of threads. The frrst reason is one of
software engineering. Due to the high level of transparency, the programmer cannot be
expected to know if the standard library routine for printing makes calls to a remote printer or
oot. It was bad programming practice to rely on procedures being local, and thus trusting that
no scheduling would occur. Therefore the advantages of non-preemptive scheduling largely
disappeared.. The other reason for preemptive scheduling of threads is that the performance
of a millti-tbreaded process can lx: increascd by running the differenl threads on differenl
processors in a multi-processor.

The oilier important change in AMOEBA 4.0 is the Creation Site field in capabilities.
This has to do with sealing. It was found unfeasible to have a purely fiat name space that
would coyer the world [26,27]. Using the old capability, it was impossible to transparently
locate the server for the object in a world-wide AMOEBA system. Now, with the new capabil
ity lay-out, reqllests for operations 00 an object can be sent ta the site that crealed thc object
immedîately, where the server can then be Iocated using the oid broadcast-oriented mechan
isms. In the rare eveot that an object migrates between AMOEBA sites, a forwarding .server
has to he left bchind al the site that created the object ta forward the request ta the site where
the abject actually lives.

5. What We Have Leamed "The only thing we leam from his·
tory is that we learn nothlng from
history" - Hegel

The versions we have implementcd, and thc rcawns for making them, have now been
discusscd. It is time to look why we went wrong in the design and ro leam our lessons, ta
prave Hegel was wrong.

In the design of AMOEBA 1.0 we aimed at a simple and efficient kemel, and forgot the
user interface. We did not appreciate the importance of the simplicity and the functiooatity
of the uscr interface enough, which is an error in any system. Fllrthennore, in imp1ementing
the inter-machine interface, we forgot that its efficiency was likewise important.

In the design of AMOEBA 2.0 wc wcrc dcterrnincd not to make the same mistakes again,
sa we concentrated too much on have a clean user interface, and did not worry about effi
ciency. The interface was fiat tlexible enough, and tao much intra-machine communication

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

10

was necessary 10 send a simple message, because the decomposition iuta tayers and modules
was too fmely grained.

In AMOIiliA 3.0 the networldng primitives were made an integral part of the operating
system instead of a separate auached lask. This made ail communication transparent and
resulted in a high performance [14,15]. Uoder the COSTll-ter MANDIS work a gateway
was added that made international communication transparent.

The last incarnation, AMOEBA 4.0, was developed mainly to deal with new technologies
of multi-procesSOl'S and wide-arca nctworks. Using the cxperiencc gained with AMOEBA 3.0,
several small changes where made 10 the system.

Wc feel that wc are converging to a good dismbuted operating system. This paper
shows the importance of implementing prototype systems for the development of a large dis
tributed operating system. Prototype systems produce the flaws in the design of the system
and give the necessary experience for developing the next version. It is necessary to docu
ment the mistakes to avoid making them again.

6. Rererences

[1] Mullender, S. J. and Tanenbaum, A. S., "The Design of a Capability-Based Distri
buted Operating System," The CompUler Journal, Vol. 29, No. 4, pp. 289-300
(MlU",h 1986).

[2] LamPSOIl, B. W., "Hints ror Computer System Design," Proc. afthe 9thACM Symp.
on Operating Systems Princip/es, New York (October 1983).

[3] Tanenbaum, A. S. and Renesse, R. van, "Making Distributed Systems Palatable,"
Proc. of 2nd SIGOPS Workshop Making Distr. Systems Work. Amsterdam (Sep
tember 1986).

[4] Mullender, S. J., "Maklng Amoeba Worle," Proe. of2nd SIGOPS Workshop Making
Distr. Systems Work, Amsterdam (September 1986).

[5] Renesse, R. van, Tanenbaum, A. S., and Sharp, G. J., "The Workstation: Computing
Resource or Just a Terminal'!," Proc. of the Workshop on Workstatwn Operating Sys
tems, Cambridge, MA (November 1987).

[6] Baalbcrgen, E. H., "Design and Implementation of Paralle1 Makc," Computing Sys
tems, Vol. 1, No. 2, pp. 135-158 (Spring 1988).

[7] Renesse. R. van and Tanenbaum, A. S., "A DircclOry Service supporting Availability
and Consistency," internaI report (1989).

[8] Renesse, R. van, Tanenbaum, A. S., and Wilschut, A., "The Design of a High
Performance File Server," Proc. orthe 9th lnt. Conf. on Disrr. Compuring Systems,
Newpon Beach, CA (June 1989).

[9] Langsford, A. E. and others, "Distributed Systems in Wide-Area Networks," pp. 96-
104, in Pme. European Telemalies Conf., Elsevier Science Pub., Amsterdam
(Cotobe,1983).

[10) Hall, J., Rcnessc, R. van, and Staveren, J. M. van, "Gateways and Management in an
Internet Environment," Proe. of the IFIP TC6 WG6.4A lnt. Workshop on LAN
Management, Hahn-Meitner-In-stitute, Berlin (West) (July 1987).

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

11

[111 Renesse, R. van, Tanenbaum, A. S., Staveren, J. M. van, and Hall, J., "Connecting
RPC-Based Distribute<1 Systems Using Wide-Arca Networks," Proc. of the 7th lnt.
Conf: on Dislr. Computing Systems, pp. 28-34. Berlin (West) (September 1987).

[I2] Renesse. R. van, Staveren, J. M. van, Hall, 1., Tumbull, M., Janssen, A. A .. Iansen, A.
J., Mullender, S. J., Holden, D. B., Ba.~tablc, A., Fallmyr, T .• Johansen, D., Mullender,
K. S., and Zimmer, W., "MANDIS/Amoeba: A Widely Dispersed Object-Oriented
Opcrating System," Proe. of the EUTECO 88 Conf., pp. 823-831, ed. R. Speth,
North-Holland, Vienna.. Ausma (April 1988),

[13] Bacon, J. M., Hom, C., Langsford, A., Mullender, S. J., and Zimmer, W .• "MANDIS:
Architectural Basis for Management," Pme. of the EUT ECO 88 Conf, pp. 795-809,
ed. R. Speth, North-Holland, Vienna, Austria (April 1988).

[141 Renesse, R. van, Staveren, J. M. van, and Tanenbaum, A. S., "The Performance of
the World's Fastest Distributed Operating System," ACM Operating Systems Review,
Vol. 22, No. 4, pp. 25~34 (October 1988).

[15J Renesse, R. van, Staveren, J. M. van, and Tanenbaum, A. S., "The Performance of
the Amoeha Distributed Operating System," Software--Practice and Experience,
Vol. 19, No. 3, pp. 223-234 (March 1989).

[16] Birrell, A. D. and Nelson, B. J., "Implemenling Remote Procedure Calls," ACM
Trans. Comp. Syst., VoL 2, No. l, pp. 39-59 (February 1984).

[17] Spector, A. Z., "Performing Remote Operations Efficiently on a Local Computer
Nelwork," Comm. ACM, Vol. 25, No. 4, pp. 246-260 (ApriI1982).

rt8] Mullcnder, S. J. and Tanenbaum, A. S., "Protection and Rcsource Control in Distri
buted Operating Systems," Computer Networks, Vol. 8, No. 5-6, pp. 421-432
(ücwbc< 1984),

[19] Tanenbaum, A. S., Mullender, S. J., and Renesse, R. van, "Using Sparse Capabilities
in a Distributed Operating System." Proc. of the 6th lm. Conf on Distr. Computing
Systems, pp. 558-563, Cambridge, MA (May 1986).

[20J Tanenbaum, A. S. and Mullender, S. J., "A Simple, Efficient Multiprogramming Ker
nel," Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam
(1982),

[21] Tanenbaum, A. S., "Operating Systems-Design and Implementation," Prentice
Hall, Englewood Cliffs, NI (1987).

[22] Mullender, S. J., lansen, A. J., and Rossum, G. van, "Amoeba Kemel Interface
Specification," Cenlre for Mathematics and Computer Science, Amsterdam (March
1988),

[23J Bal, H. E., Renesse, R. van, and Tanenbaum, A. S .. "Implementing Distributed AIgu
rithms Using Remote Procedure CaUs," Proc. of the 1987 National Computer Conf,
pp. 499-506, Chicago, III (June 1987).

l24] Bal, H. E. and Renesse, R. van, "A Summary of Parallel AIpha-Beta Search
Results," ICCA Journal, Vol. 9, pp. 146-149 (September 1986).

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

12

[25] Juhansen, D. and Anshus, O. J., "A Distributed Diary Application," Proe. of the
[FI? TC 6 First [berian Conf on Data Communications, ed. A. Cerveira., North
Holland, Lisbon, Portugal (May 1987).

[261 Mullender, S. J. and Vita.llyi, P. M. B., "Distributed Match-Making for Processes in
Computer Networks," Proe, of the 4th ACM Conf on PTineipies of Dis!r. Computing,
Minaki, Canada (August 1985).

[27] Mullender, S. J. and Vitânyi, P. M. B., "Distributed Match-Making," Algorithmica,
200 special issue on distributed algorithms (1988).

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

