Lecture Notes In
Computer Science

. Edited by G. Goos and J. Hartmanis

433

RIST

W. Schroder-Preikschat

8 W. Zimmer (Eds.)

n |

> o

5 Progress in Distributed
1T .

= Operating Systems

2 and Distributed

m

‘Systems Management

European Workshop, Berlin, FRG, April 18/19, 1989
Proceedings

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo HongKong

BIBLIOTHEQUE DU CERIST

Editorial Board

D. Barstow W.Brauer F Brinch Hansen D. Gries D. Luckham
C. Moler A. Prueli G. Seegmiiller J. Stoer N. Wirth

Editors

Wolfgang Schroder-Preikschat

Wolfgang Zimmer

GMD Research Center for Innovative Computer Systems
and Technology at the Technical University of Berlin
GMO-FIRST

Hardenbargplatz 2, D-1000 Berlin 12, FRG

CR Subject Classification (1987): D.4, C.2

ISBN 3-540-52609-9 Springer-Verlag Berlin Heidetberg New York
ISBN 0-387-52609-2 Springer-Verlag New York Berlin Heidelberg

This wark is subject ta copyright. Al rights are recarvad, whather the whala or part of the material
ia congerned, specifically the rights of trans|ation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfiims or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
taw of Seplember 9, 1968, in its version of June 24, 1988, and a copyright fee must alwaye he
paid. Violations fall under the prosecution act of the German Copyright Law.

& SpringerVerlag Berlin Heidslbarg 1290

Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 — Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

This volume constitutes the proceedings of the first European workshop on
Progress in Distibuted Operating Systems and Disfributed Systems
Management, The purpose of the workshop was fo provide a general
forum for distibuted systems researchers. Contributions by well-known
European research groups, compieted by J.H. Saltizer from MIT's Athena
proiect, were presented and thoroughly discussed during two days.

As the workshop title indicates, special emphasis was placed on research
qctivities in distributed operating systerms and management of distributed
systems, whereby the first workshop day was dedicated to operating
systern research and the second day dealt with management aspects of
distributed systems.

it was not planned to provide a forum where only concepts, without any
relation to technical project work, could be presented or ‘business talks’
could be given. The fifteen presentations focussed on the itlustration of
existing concepts and solutions in distibuted systems research and
development, exemplified by o case study analysis of various projects.
Each day closed with a panel discussion on the key ressarch directions,
recent progress and fufure developments in these aregs. The panels were
composed of the presenters of the same day and chaired by J.H. Saltzer
and A.J. Herbert,

The order of papers included in this volume reflects the order of
presentafions given, All papers have been carefully reviewed by the
programme committee and the best ones have been selecied for
publication. The volume annex contains the posttion papers das prepared
by the authors for the panel discussions.

We would like to thank all the people of GMD HRST and FOKUS who have
helped fo organize the workshop and especially the authors of the
presented papers, without whom this workshop would not have been such
a success. Special thanks are dedicated to Rolf Speth of the CEC and to
Alwyn Langsford, the project coordingicor of the MANDIS project, for the
financial support of the workshop. Finally we would like to thank the GMD for
their generous suppaort.

In the meantime, we have received a very positive echo concerning the
quality of the Berin workshop. Especially the wide spread of topics
handled at the workshop was generdlly appreciated. This encourages us
to look forward 1o the second workshop of this kind.

Berlin, March 1990 Wolfgang Schréder-Preikschat
Wolfgang Zimmer

BIBLIOTHEQUE DU CERIST

European Worksheop on

PROGRESS IN DISTRIBUTED OPERATING SYSTEMS
AND DISTRIBUTED SYSTEMS MANAGEMENT

Supported by the CEC Cost 11 ter Action
Organized and hosted by GMD FRST and GMD FOKUS Berlin

FIRST - Research Center for Innovative Computer Systems and Technology
FOKUS - Research Center for Open Communication Systems
GMD - German National Research Center for Computer Science

Programme Committee

W. K. Giloi, GMD FHRST (Chair).

B. Butscher, GMD FOKUS

J. Hall, GMD FOKUS

W. Schroder-Preikschat, GMD FRST
W. Zimmer, GMD RRST

Organizing Commitiee

D. Emons, C. Freytag, Yee-Mei Guo, R. Kailerhoff, D. Koop,
W. Schréder-Preikschat, C. Schulze, G. Tysper, W. Zimmer

GMD FIRST

BIBLIOTHEQUE DU CERIST

Table of Confents VeV)

Technical Papers L‘\‘; "\\ Ny

The Evolution of o Distribuled Operaling System ...l SRS i I

R. van Renesse, A. S. Tanenbaum - Viije Universiteit Amsterdam,
S. J. Mullender - CWI Amsterdam

All - a Class-oriented RPC Stub Generafor for Amoeb.............cccvvvvvvcviicviinnnnn,

G. van Rossum - CWI Amsterdam

PEACE - A Distributed Operating System for H.'gh -Performonce

Mulficompuler Sysfems ... v
W. Schroder-Preikschat - GMD FIRST Berlln

Virtual Memory Management in Chorus...
V. Abrossimov, M. Rozier, M. Gien - Chorus Sys‘remes Porls

Is Object Orlentation a Good Thing for Distributed Systems 2.

C. Hom - Trinity College Dublin

13

ni22

w4

Expetiences with a Poriable Network Operating System............ccccccoecvvnncvvicnnnnnas 75

K. Geihs, H. Schrnutz - IBM ENC Heldelberg

On the Implemeniation of Abstract Data Typesin BitliX ...
W, Lux, H. Hartig, W. Kihnhauser - GMD Birlinghoven

Moniforing cnd Management-Support of Disfributed Systems.....................

D. Haban - ICSE Berkelay, D. Wybranietz - Universitét Kaiserslautern,
A. Barak - ICSl Berkeley

DAPHNE - Support for Distributed Compufmg in Heferogeneous

Environmenis ..

K.-P. Léhr, L Nenhmg Frele Umversrrc’r Berl:n.
J. Mdller - Universitdt Bremen

Disfributed Compufing with a Processor Bank...

87

110

.. 138

. 147

J. M. Bacon, I. M. Leslie, R. M. Needham - Unwersﬁy of Cc:mbndge

MANDIS: Management of Distributed Systems............ccociiicivivnsnne
D. Holden, A. Langsford - UKAEA Harwell Laboratory

OAl - Conceptis for Open Systems Cooperalion.......oviiicveecoisnnssnes

V. Tschammer, K.-P. Eckert, J. Hall, G. Schdarmann, L. Strick - GMD FOKUS
Berlin

BIBLIOTHEQUE DU CERIST

Vi

Annex: Position Papers for the Panel Discussions

R. van Renesse - Vrije Universiteil AmMSterdQm . vonvcrninnccnmssssisseisieerens 193
S. J. Mullender, G. van Rossum - CWI Amnsterdam........... o 198
W. Schroder-Preikschat - GMD FIRST BEFIiNusnvvvvssseereseonns S 196
T. King - Perihelion Software Limited 197
C. Hom - Trinity College DUBIN ..o veieees 198
H. SCHMUIZ = BM ENC HEIABIDEIG c......oovvovvosseesvrmreesssssesrarassessrsssssassssmesssssmmesses 199
H. Hartig - GMD BIlINGhOVEN ..o s ssssssrsans 200
J. Nehmer - Universitaf Kaiserslauterm ..., . w201
J. H. Saltzer - MIT Cambridge . ..202
J. M. Bacon - University of Cambridge ... vsicvsvnsiiisin 203
A. Langsford - UKAEA Harwell Laboratory........cevieveiivireecns sestis et st tenatbns 204
V. Tschammer - GMD FOKUS BEMN ...c.vvcvicicnsmmnccsnenicimmin i 206

BIBLIOTHEQUE DU CERIST

The Evolation of a Distributed Operating System

Robbert van Renesse
Andrew §. Tanenbaum

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam

Sape J. Mullender

Centre for Mathematics and Computer Science
Amsterdam

AMOEBA is a research project to build a true disiributed operating system
using the object model. Under the COST11-ter MANDIS project this work
was extended to cover wide-area networks. Besides describing the system,
this paper discusses the successive versions in the implementation of its
model, and why the changes were made. Its purpose is to prevent ourselves
and others from making the same mistakes again, and to illustrate how 2 dis-
tributed operating system grows in sophistication and size.

1. Why This Paper “Those who learn nothing from his-
tory are doomed to repeal it —
Santayana
For about eight years now, we have been doing research on distributed operating sys-
tems, not only behind our desks, but also behind our terminals, The distributed system we
are developing is called AMOEBA[1], and it is constantly evolving. It is being developed at
the Vrije Universiteit and the Centre for Mathematics and Computer Science (CWI), both in
Amsterdam. AMOEBA currently runs on Motorola 68020, National Semiconductor 32032,
and MicroVax II processors, Both Ethemet and the Pronet token ring are supported by
AMOEBA, and can be connected by a bridge. '

COST11-ter MANDIS is an internarional project investigating the management require-
ments for large international networks of computers. It has adopted the object-model as a
framework within which to discuss the management of wide-area distributed systems. To
experiment with this, the MANDIS project adopted the Amoeba distributed operating system,
extended with a gateway for wide-area communication. Amoeba sysiems in Holland (Vrije
Universiteit, CWI), the UK, (Harwell Laboratories, Hatfield Polytechnic), in Berlin
(GMDY/FOKUS) and in Norway (University of Tromsg) have been connected into a single,
transparent distributed system.

This research was supported in part by the Netherlands Organization for Scientific Research (N.W.0.)
under grant 125-30-10,

BIBLIOTHEQUE DU CERIST

In any system, mistakes can appeat in the design: features that are missing, features that
are obsolete, and features thal are too hard to handle. Sometimes the solution needs a consid-
erable redesign of the system, and a new version is born. - One has Lo be prepared 1o redo sys-
tems [2-4]. When designing a system, it is important not to make mistakes twice, be they
your own, or anyone else’s. Therefore it is necessary to read about other comparable pro-
jects, and to document your own.

2. The AMOEBA Architecture Bradiey’s Bromide: “H computers
get too powerful, we can organize
them imo & commitlee—ihat will do
them in'’

The AMOEBA architecture consists of four principal components, as shown in Fig. 1.
First are the workstations, one per user, which run window management software, and on
which users can carry out editing and other {asks that require fast interactive response [5].
Second are the pool processors, a group of CPUs that can be dynamically allocated as
aceded, used, and then returned to the pool. For example, the **make’’ command might need
to do six compilations, so six processors could be taken out of the pooi for the time necessary
10 do the compilation and then returned. Alternatively, with a five-pass compiler, 5 x 6 = 30
processors could be allocated for the six compilations, gaining even more speedup [6].

Third are the specialized servers, such as directory [7], file servers [8], and various other
servers with specialized functions. Fourth are the wide-area network gateways, which are
used to link AMOEBA systemns at different sites in possibly different countries into a single,
uniform system, such as investigated in the MANDIS work {9-13].

Processor Pool Workstations

i] S

Gateway
e WAN

r" li] tj ‘Specialized servers
I {file, data base, ete)

Fig, 1, The AMOEBA architechrre.

All the AMOEBA machines run the same kernel, which primarily provides communica-
tion services and little else. The basic idea behind the kernel was to keep it small, not only to
enhance its reliability, but also to allow as much of the operating system as possible o run as
user processes, providing for flexibility and experimentation.

BIBLIOTHEQUE DU CERIST

2.1, Transactions

AMOEBA is an object-oriented distributed operating sysiem. Objects are abstract data
types such as files, directories, processes, and are managed by server processes. A client pro-
cess carries out operations on an object by sending 4 request message to the Server process
that manages the ohject. While the client blocks, the server performs the requested eperation
on the object. Afterwards the server sends a reply message back to the client, which
unblocks the client. We have named this request/reply exchange a transaction (not to be
confused with data base transactions} {14, 15]. AMOEBA guaraniees gt-most-once execution
of transactions. Remote procedure calls [16, 17] are implemented by collecting a code identi-
fying the procedure to be executed and the arguments in a request message, and performing a
transaction with the appropriate server. The result of the procedure is retrieved from the
reply message.

After starting a transaction, a client process blocks to await the reply. A server process
biocks when it is awaiting a request. To handle multiple transactions going on at the same
time a process can be subdivided into lightweight subprocesses called threads. By having a
thread for each request, a server process can handle multiple requests simultaneously. A
client process can perform several transactions at the same time by having a thread per trans-
action. To avoid race conditions and simplify programming the threads are only rescheduled
when the currently running thread blocks, that is, threads are not pre-empted.

2.2. Capabilities

All objects in AMOEBA are named and protecied by capabilities [18,19]. Capabilities,
combined with transactions, provide a uniform interface to all objects in the AMOEBA system.
A capability has 128 bits, and is composed of four fields:

1} The server pori: a 48 bit sparse address identifying the server process that manages the
object. A server can choose its own port.

2) The object number: an iniernal 24-bit identifier that the server uses to tell which of is
objects this is. The server port and the object number together uniquely identify an
object.

3) The rights field: 8 bits telling which operations on the object are permitted by the holder
of this capability.

4) The check field: a 48-bit number that protects the capability against forging and tamper-
ing,

When a server is asked to create an object, it picks an available <lot in its internal tables,
puts the information aboat the object in there as well as a 48-bit random number. The index
into the table is used as the object number in the capability. The rights in the capability are
protected by encrypting them together with the random number, and storing the result in the
check field. A capability can be checked by performing the encryption operation again, and
comparing the result with the check field in the capability.

Capabilities can be stored in directories that are managed by the direciory service. A
directory is cffectively a set of <ASCIL string, capability>» pairs, and is itself just another
object in the AMOEBA system. Directory entries may, of course, contain capabilities for other
directories, and thus an arbitrary naming graph can be built. The most common directory
operation is to present an ASCII string and ask for the corresponding capability. Other
operations are entering and deleting directory entries, and listing a directory [7].

BIBLIOTHEQUE DU CERIST

3. AMOEBRA Incarnations “Expericnce is that murvelous thing
that enables you to recognize a mis-
take when you make it again™ -
E.P. lones

To get experience with distributed operating systems, and with the object model in par-
ticular, we have built an implementation of the AMOEBA systemn. This implementation con-
sists of a small, highly portable, and efficient kernel, capable of providing local and remote
communication, driving peripherals, and running processes; all other services are provided by
user processes. In the following we only discuss the kernel.

Working with the first version of AMOEBA, we became aware of some of the deficien-
cies in its design. After a while we threw it away and built a new version. As this version
did not solve all the problems, we designed and implemented the third, and carrent, version.
We are currently designing the fourth version. Each of these versions are discussed more or
less independently in the next sections. In section 4 we will compare them and describe why
the changes were made.

3.1. AMOEBA 1.0

The AMOEBA 1.0 kernel [20] is a simple multiprogramming kernel, with intra-machine
communication based on software interrupts. It has three layers. The bottom layer catches
all hardware interrupts, Each interrupt cavscs a message (0 be put into a lask queue. Mes-
sages may contain parameters, such as the value of a character just received on a communica-
tion line. Mostly these are the values of some of the devices that generated the interrupt.
Furthermore, the layer schedules the kernel tasks, that constitute the middle layer of the ker-
nel, and the user processes in the highest layer.

A 1ask takes care of a particular device, for example, 2 disk or a clock. It is called
whenever there is a message for it on the task queue. A user process is scheduled when there
are no tasks left to run, or if the current running process has eaten up its time slice. Both
tasks and processes are able to put something in the task gueue, thus scheduling a task,

Tasks run to completion. When an interrupt occurs, a message is put on the task queue,
and the task is resumed. This means that there are no race conditions in interrupt handling,
and only one run-time stack is needed for all tasks. Tasks can be programmed entirely in a
high-level language.

The two most important tasks are the clock rask and the network task. The clock task
simulates multiple timers: it has functions to-set and cancel timers. The network task pro-
vides a network interface that does not guarantee delivery. A user process needs both ser-
vices 10 nnplement a reliable network interface.

A user process can suspend itself, enable or disable certain messages from specific
sources, and send or cancel messages. It invokes a task by sending a message to it by placing
anh entry in the task queve. The message contains four parameters, such as the specific func-
tion that must be executed by the task. As in the kernel, these messages are queued when
arriving inconveniently. When a process is properly enabled, it is informed that a message is
pending by an interrupt.

This way a process can call the three functions performed by the network task:
geilheader, buffer), put(header, buffer}, and ungei(header). The header (see Fig. 2) is a 40

BIBLIOTHEQUE DU CERIST

length

destination port
reply port

signature port
out-of-band daia

Fig. 2. Header format.

byte structure containing the total length of header and buifer, the destination porr, the reply
port, the signature port, and 20 byie out of band data. A port is a network independent
address, chosen from a sparse 48 bit address space, and protected by a cryptographic one-way
function. The signature port can be used for sender authentication.

Get enables receiving, while put sends a packet. Neither are 100% reliable in that
packets may get lost. An interrupt is generated on completion. Unger disables receiving.
The data buffer has a maximum size of 2 Kbytes, enough 1o contain about two thirds of the
files in an average file system.,

A user library of procedures uses these primitives, together with timers, to implement
the transaction interface. A client invokes a service by calling trans(hdril, bufl, hdr2, buf2).
The request is put into Adrl and buf7; the reply will be put into hdr2 and buf2. The server
calls getreg(header, buffer) to enable receiving of a request, and putrep(header, buffer) to
send a reply back. In each of the three calls, an interrupt is generated on completion,

The protocol used is simple, yet makes efficient use of the network bandwidth. Nor-
mally the reply acknowledges the request, and the reply is acknowledged by the next request.
Separate acknowledgements are generated only when the reply or the next request is taking
too long. It is possible to have multiple outstanding getreg’s, to handle more than one client,
or to have multiple trans’s going on, thus enabling parallel programming,.

32. AMOEBA 2.0

Intra-machine communication in AMOEBA 2.0 is through 26-byte typed messages, called
mini-messages. When a hardware interrupts occurs, the real-time information is put into a
mini-message and sent to the appropriate task. The user interface to the tasks is also through
these messages. This kernel has formed the base for the MINTX operating system [21].

The calls to send and receive messages are:

sendfdestination, message);
recv(source, message);
sendrec(destination, message).

Send sends the message to the specified destination: tasks are identified by negative numbers,
processes by positive numbers. When the destination is not ready to receive, the message is
queued. Recv is calied when a task or process wants to await a message from the specified
source, which may be ANY. Sendrec is provided for efficiency: it sends the message to the
destination and awaits a reply message.

BIBLIOTHEQUE DU CERIST

8

A process may be inierrupted by a task or another process with a special interrupt mes-
sage. Interrupts ge at most one level deep, to simplify interrupt handling. Other messages
that arrive during interrupi handling are queued as usual.

The services provided by the kernel are the same as in AMOEBA 1.0., including the clock
task and the network task. The mransaction mechanism interface to the nser processes is
almost identical, so existing user services for AMOEBA 1.0 are easily ported. Later the trans-
action interface of AMOEBA 3.0, the currently used incarnation of AMOEBA, has been imple-
mented for MINIX.

3.3. AMOEEA 3.0

In AMOEBA 3.0, ail communication, both intra-machine and inter-machine, is through
transactions, The interface is slightly medified and extended:

getregiheader, buffer, length);
putrep(header, buffer, length);
trans(hdrl, bufl, lenl, hdr2, buf2, len2);
new_thread(procedure);

thread_exit();

sleeplevent);

wakeup(event}.

The server, either a kernel lask or a user process, calls geireg to await a request message, and
putrep to send a reply back, A client process calls trans to send the request in dr] and bufl,
and to await the reply, which will be put into hdr2 and buf2. The header contains the capabil-
ity identifying the service and object, and 20 bytes of out of band data contaming the com-
mand to the server and its parameters. The buffer, with a specified length of maximally 30
Kbytes, contains the data associated with the request or the reply.

Note that these calls are blocking, and prevent parallel computing. To allow concurrent
programming, we introduce threads, a light-weight sub-process. Within a process, only one
thread can run at a time; another one may be scheduled when the current running thread does
a blocking call. While some threads are awaiting a request or a reply, another thread may
rim, A server that wants to be able (o service muliiple clients will have several identieal
threads, created with new_thread, capable of executing requests.

The kernel is just another process, having threads (tasks) to drive the peripherals. The
bottom layer in the kernel schedules the threads of all processes, executes the transactions,
copies local messages, and runs the network protocol. Device interrupts are still queued, but
not transformed into messages. Tnstead, interrupt routines are invoked at *‘save™ times, that
is, in between thread switches. The network protocol sends separate acknowledgements for
request and reply fragments, and network DMA is done simultancously with the other side as
much as possible. No separate timers are maintained, but a simple, once in a while “‘sweep’’
procedure restarts stopped protocols. All this results in simple and efficient message passing
[14,15].

The physical location of ports, and thus of servers and objects, is maintained in a cache
per site, When the location of a port is unknown or out-of-date, it is located with a special
broadcast iocate message, and the cache is npdated.

Threads within a process can synchronize using sleep and wakeup. A thread that wants
to await an ¢vent invokes sleep; a thread that wants to resume other threads waiting for a

BIBLIOTHEQUE DU CERIST

certain event calls wakeup. Since threads run to the next blocking system call, there is no
danger of race conditions.

Under the COST11-ter project AMOEBA 3.0 was extended to wide-area networks using a
special gateway [11,12]. The gateway manages the wide-area communication without
affecting the local networks. This management includes naming and protection of objects,
accounting, and fault management of communication. The gateway is high-level: it inter-
vepts complete messages, and if aceess is granted, establishes a virtual circuit to the intended
destination to forward the message across. The gateway at the destination site repeats the
transaction, and forwards the reply over the same virtual circuit back to the source The gate-
way registers all remote servers and their locations to know which messages to forward and
which not. site.

3.4. AMOEEBA 4.0

In AMOEBA 4.0 [22] processes are subdivided into light-weight threads, but now we no
longer guarantee that threads run unpreempted to the next blocking system call. Moreover,
we allow threads to await requests for multiple ports, and to specify message buffers of up to
one Gigabyte. This has affected the user inferface as follows:

getregiport-list, header, buffer, length);
putrep{header, buffer, length);
transthdrl, bufl, lenl, hdr2, buf2, len2);
new_thread(procedure);

thread_exit();

mu_lock(mutex);

ritrylock(mutex, timeout),
mit_unlockimutex).

Note that sieep and wakeup cannot be used as synchronization primitives anymore, since they
would be fraught with race conditions because of the preemptive scheduling of tasks.
mu_lock and mu_unlock respectively acquire and release a mutex variable. mu_trylock tries
to acquire the lock within timeout milliseconds, and returns an error if this fails.

An important change in this new incarnation of AMOEBA is the format of the capability,
which, as we will see, also influences the semantics of trans. The new format is shown in
Fig. 3. The sizes of the different fields have been increased. Moreover, there is an extra field
designating the creation site. In AMOEBA 4.0 it is assumed that objects hardly ever migrate
away from the site of their creation. This obsoletes the necessity to register all remote ser-
vices at the gateways, thus decreasing the amount of management necessary considerably.

64 64 32 2 64 #bits
| Service Port | Creation Site | Object | Rights | Check |

Fig. 3. An AMOEBA 4.0 capability.

BIBLIOTHEQUE DU CERIST

4. Comparison “I have made misiakes but [have
never made the mistake of claiming
that 1 never made one™ -— James
Gordon Bennett

Having discussed each of the implementations of the object model more or less indepen-
dently, it is now time to fook what changed and why. The differences concem efficiency and
programmability; these goals are ofien conflicting. Both metamorphoses are discussed in the
following sections.

4.1. AMOEBA 1.0 — AMOEBA 2.0

Our first objection against AMOEBA 1.0 was the difficulty in programming with it. All
communication with the outside world was through asynchronous messages. Although flexi-
ble, it puts us back some decades when programmers had to work at a very low level, The
processes were pelted with interrupts. Each process had to do its own job scheduling.

Fusthermore, the interrupts carried too little information—often additional information
had to be transported by a special copying task. In addition to the complexity involved, it
was inefficient, and it had protection problems. When data had to be copied between two
processes, one had to do this, and thus had full acoess 1o the address space of the other pro-
cess,

Farthermore, debugging was difficult, because it was hard to.trace a process that can be
interrupted at any moment, and each time somewhere else. Moreover, interrupts might arrive
in another order when the process was execuied again, and dcbug statements in the code
changed the behaviour. Thus AMOEBA 1.0 processes were nondeterministic, and a failure
might occur only once in a month, making it hard to find the error.

We abolished these problems in AMOEBA 2.0 by abolishing needless interrupts. All
ordinary communication was through typed mini-messages, and although small, they were
large enough for an average command with parameters or a reply. Messages only arrived
when called for, which made both programming and debugging considerably easier, because
a program could be written in the usual structured way.

4.2. AMOEBA 2.0 — AMOERBA 3.0

Although happier, we were not completely satisfied with oar basis for a distnibuted
operating system. To begin with, too little concurrency was left in with the new intra-
machine communication mechanism. The receive call was blocking, and it was not possible
to check if there was something in the message queue. Moreover, it was not possible to give
a set of sources from which to reccive a message, so the messages had to be handled in the
order they armived.

Also annoying were the different intra-machine and inter-machine communication
mechanisms. This problem also existed in AMOEBA 1.0, but in AMOEBA 2.0 the mechanisms
are much more alike. Furthermore, to start a transaction, a mini-message had to be sent o
the network task, another to enable receipt of the acknowledgement, and a third Lo the clock
task to set a timer. When the acknowledgement arrived, the timer had to be canceled, which
cost anothcr mini-message. All this made inter-machine communication inefficient.

These problems were solved in AMOEBA 3.0 by making the transaction the only com-
munication primitive. Moreover, the messages are much larger, so a special task to copy data

BIBLIOTHEQUE DU CERIST

became obsolete. At the same time, the protection problem with copying disappeared. Com-
munication became transparent, having obvions advantages.

Like the mini-message calls, transaction calls were blocking now. Concurrent program-
ming was made possible through threads: each thread can handle one client and one server.
This way we have the profit of concurrent programming combined with the ease of simple,
every-day programming.

4.3. AMOEBA 3.0 - AMOEBA 4.0

AMOEBA 3.0 is the first incarnation that is heavily used for distributed applications [23-
25], and has ied to several suggestions for improvements. Also, the hardware technology has
improved considerably, making multi-processors more and more interesting. In the first
three incarnations we envisioned only loosely-coupled hardware, but now we also bave (o
deal with processors sharing memory over a shared bus. Yer another factor that makes a new
implementation necessary is the advance of wide-area networks, making large distributed
operating systems inferesiing.

There are two reasons for preemptive scheduling of threads. The first reason is one of
software engineering. Due to the high level of transparency, the programmer cannot be
expected to know if the standard library routine for printing makes calls to a remote printer or
not. It was bad programming practice to rely on procedures being local, and thus trusting that
no scheduling would oceur. Therefore the advantages of non-preemptive scheduling largely
disappeared. The other reason for preemptive scheduling of threads is that the performance
of a multi-threaded process can be increased by running the different threads on different
processors in a multi-processor.

The other important change in AMOEBA 4.0 is the Creation Site field in capabilities.
This has to do with scaling. It was found unfeasible to have a purely flat name space that
would cover the world [26,27]. Using the old capability, it was impossible to transparently
locate the server for the object in a world-wide AMOEBA system. Now, with the new capabil-
ity lay-out, requests for operalions on an objecl can be sent to the site that creaied the object
immediately, where the server can then be located using the old broadcast-oriented mechan-
isms. In the rare event that an object migrates between AMOEBA sites, a forwarding server
has to be left behind at the site that created the object to forward the request to the site where
the object actually lives,

5. What We Have Learned ““The only thing we learn from his-
tory is that we leamn nothing from
history’” — Hepgel

The versions we have impiemented, and the reasons for making them, have now been
discussed. It is time to look why we went wrong in the design and to learn our lessons, to
prove Hegel was wrong.

In the design of AMOEBA 1.0 we aimed at a simple and efficient kernel, and forgot the
user interface. We did not appreciate the importance of the simplicity and the functionality
of the user interface enough, which is an error in any system. Furthermore, in implementing
the inter-machine interface, we forgot that its efficiency was likewise important.

In the design of AMOEBA 2.0 we were determined not to make the same mistakes again,

so we concentrated too much on have a clean user interface, and did not worry about effi-
ciency. The interface was not flexible enough, and too much intra-machine communication

BIBLIOTHEQUE DU CERIST

14

was necessary to send a simple message, because the decomposition into layers and moduies
was too finely grained.

In AMOEBA 3.0 the networking primitives were made an integral part of the operating
sysiem instead of a separate altached task. This made all communicalion transparent and
resulted in a high performance [14,15]. Under the COST11-ter MANDIS work a gateway
was added that made international communication transparent.

The last incarnation, AMOEBA 4.0, was developed mainly to deal with new technologies
of multi-processors and wide-arca networks. Using the experience gained with AMOEBA 3.0,
several small changes where made to the system.

We feel that we are converging to a good distributed operating system. This paper
shows the importance of implementing prototype systems for the development of a large dis-
tributed operating system. Prototype systems produce the flaws in the design of the system
and give the necessary experience for developing the next version. It is necessary to docu-
ment the mistakes to avoid making them again.

6. References

[1] Mullender, S. I. and Tanenbaum, A. S., ““The Design of a Capability-Based Distri-
buted Operating System,”” The Computer Journal, Vol. 29, No. 4, pp. 289-300
(March 1986). '

{21 Lampson, B. W,, “Hints for Compuler System Design,”” Proc. of the 9th ACM Symp.
on Operating Systems Principles, New York {October 1983).

3] Tanenbaum, A. S. and Renesse, R. van, *“Making Distributed Systems Palatable,”’
- Proc. of 2nd SIGOPS Workshop Making Distr. Systems Work, Amsterdam (Sep-
tember 1986).

4] Mullender, S. I., “*Making Amoeba Work,”” Proc. of 2nd SIGOPS Workshop Making
Distr. Systems Work, Amsterdam (September 1986),

[S] Renesse, R. van, Tanenbaum, A. §., and Sharp, G. J., *“The Workstation: Computing
Resource or Just a Terminal?,”” Proc. of the Workshop on Workstation Operating Sys-
temns, Cambridge, MA (November 1987).

[6] Baalbergen, E. H,, “Design and Implementation of Parallel Make,”” Computing Sys-
tems, Vol. 1, No. 2, pp. 135-158 (Spring 1988).

[7] Renesse, R. van and Tanenbaum, A. §.,, *‘A Dircetory Service supporting Availability
and Consistency.”” internal report (1989). '

[8] Renesse, R. van, Tanenbaum, A. S., and Wilschut, A., “The Design of a High-
Performance File Server,”” Proc. of the $th Int. Conf. on Distr. Computing Systems,
Newport Beach, CA (June 1989).

[9] Langsford, A, E. and others, “‘Diswibuted Systems in Wide-Area Networks,”” pp. 96-
104, in Proc. Euwropean Telematics Conf., Elsevier Science Pub., Amsterdam
(October 1983), '

[10} Hall, J., Renesse, R. van, and Staveren, J. M. van, “‘Gateways and Management i an
Intemet Environment,”’ Proc. of the IFIP TC6 WG6.4A Int. Workshop on LAN
Management, Hahn-Meitner-Institute, Berlin (West) (July 1987). ' '

BIBLIOTHEQUE DU CERIST

[11]

{12]

[13]

(14]

{15]

[16]
[17]

[18]

[19]

201

[21]

[22]

(23]

[24]

11

Renesse, R. van, Tanenbaum, A, S., Staveren, J, M. van, and Hall, I., ““Connecting
RPC-Based Distributed Systems Using Wide-Arca Networks,”* Proc. of the 7th Int.
Conf. on Distr. Computing Systems, pp. 28-34, Berlin (West) (September 1987).

Renesse, R. van, Staveren, J. M. van, Hall, J., Turnball, M., Janssen, A. A., Jansen, A.
J., Mullender, S. J., Holden, D. B., Bastabie, A., Fallmyr, T., Johansen, D,, Mullender,
K. S, and Zimmer, W., ““MANDIS/Amoeba; A Widely Dispersed Object-Oriented
Operating System,”” Proc. of the EUTECO 88 Conf., pp. 823-831, ed. R. Speth,
North-Holland, Vienna, Austria (April 1988).

Bacon, I. M., Homn, C., Langsford, A., Mullender, 8. J., and Zimmer, W, “MANDIS:
Architectural Basis for Management,”” Proc. of the EUTECO 88 Conf., pp. 795-809,
ed. R. Speth, North-Holland, Vienna, Austria (April 1988).

Renesse, R. van, Staveren, J. M. van, and Tanenbaum, A. S., **The Performance of
the World’s Fastest Distributed Operating System,”’ ACM Operating Systems Review,
Vol. 22, No. 4, pp. 25-34 (October 1988).

Renesse, R. van, Staveren, I. M, van, and Tanenbaum, A. S., “The Performance of
the Amoeba Distributed Operating System,”’ Software—Practice and Experience,
Vol. 19, No. 3, pp. 223-234 (March 1989).

Birrell, A. D. and Nelson, B. J., “Implementing Remote Procedure Calls,”” ACM
Trans. Comp. Syst., Vol. 2, No. 1, pp. 39-39 (February 1984),

Spector, A. Z., “‘Performing Remote Operations Efficiently on a Local Computer
Network,” Comm. ACM, Vol. 25, No. 4, pp. 246-260 (April 1982).

Mullcnder, 8. J. and Tanenbaum, A. S., *‘Protection and Resource Control in Distri-
buted Operating Systems,”” Computer Networks, Vol. 8, No. 5-6, pp. 421432
(October 1984),

Tanenbaurn, A. S., Mullender, S. 1., and Renesse, R. van, “‘Using Sparse Capabilities
in a Distributed Operating System,”” Proc. of the 6th Int. Conf. on Distr. Computing
Systems, pp. 558-563, Cambridge, MA (May 1986),

Tanenbaum, A. S. and Mullender, S. 1., “‘A Simple, Efficient Multiprogramming Ker-
nel,”” Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam
(1982).

Tanenbaum, A. S., “*Operating Systems—Design and Implementation,”” Prentice-
Hall, Englewood Cliffs, NJ (1987).

Mullender, S. I, Jansen, A, J., and Rossum, (. van, ‘‘Amoeba Kernel Interface
Specification,”’ Cenire for Mathematics and Computer Science, Amsterdam (March
1988).

Bal, H. E., Renesse, R. van, and Tanenbaum, A. 8., “‘Implementing Distributed Algo-
rithms Using Remote Procedure Calls,”” Proc. of the 1987 National Computer Conf.,
pp. 499-506, Chicago, 111 (June 1987).

Bal, H. E. and Renesse, R, van, “*A Summary of Parallel Alpha-Beta Search
Results,”” ICCA Journal, Vol. 9, pp. 146-149 (September 1986).

BIBLIOTHEQUE DU CERIST

[25]

[26]

{27]

12

Johansen, D, and Anshus, O. J., *‘A Distributed Diary Application,”’ Proc. of the
IFIP TC 6 First Iberian Conf. on Data Communications, ed. A, Cerveira., Novth-
Holland, Lisbon, Portugal (May 1987),

Mullender, S. J. and Vitdnyi, P. M. B., *'Distributed Match-Making for Processes in
Computer Networks,” Proc. of the 4th ACM Conf. on Principles of Distr. Computing,
Mipaki, Canada (August 1985).

Mullender, 8. J. and Vitdnyi, P. M. B., “*Distributed Match-Making,’* Algorithmica,
2nd special issue on distributed algorithms (1988).

