
(
\.

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

414

Antoni Kreczmar
Andrzej Salwicki
Marek Warpechowski

LOGLAN '88-
Report on the
Programming Language
With the collaboration of Boleslaw Ciesielski,
Marek Lao, Andrzej Litwiniuk, Teresa przytycka,
Jolanta Warpechowska, Andrzej Szatas,
Danuta Szczepanska-Wasersztrum

Foreword by Hans Langmaack

S pri nger-Verlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Editorial Board

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Authors

Antoni Kreczmar
Andrzej Salwicki
Marek Warpechowski
Institute of Informatics, University of Warsaw
PKiN, room 850, P-00901 Warsaw, Poland

CR Subject Classification (1987): D.3.2

ISBN 3-540-52325-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-52325-1 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, whether the whole or part 01 the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
01 this publication or parts thereol is only permitted under the provisions 01 the German Copyright
Law 01 September 9, 1965, in its version 01 June 24, 1985, and a copyright lee must always be
paid. Violations lall under the prosecution act of the German Copyright Law.

© Springer·Verlag Berlin Heidelberg 1990
Printed in Germany

Printing and binding: Oruckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 - Printed on acid·lree paper

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Foreword

It is a pleasure for me to comply with the editors' desire to write a Foreword ta
the report on the object orientecLprégrammirtg la:nguage LOGLAN '88 which has been
created by the informatics research_group of A.rKreczmarand A. Salwicki at War
saw University. The authors have indeed succeeded in defining and implementing a
fully typed programming language of the AL.GOL-PASCAL-family where more modern
notions like objects, inheritance, pro cesses and communications are harmoniously inte
grated with more established concepts like block structure, static scoping and higher
functionality. The Warsaw group has come up with a characteristic semantical and
implementational perception of the notion object which strongly supports LOGLAN's
homogeneous language design.

In this foreword, I would prefer not ta describe all aspects of this language and
compare them with all other existing approaches; this would overcharge me at the
moment since object oriented programming is an exploding area. I would prefer to be
a companion of our Warsaw colleagues, to say a little about my personal acquaintance
with LOGLAN and to address sorne of its language constructs, their semantics and
implementations.

Already in the seventies, the Warsaw group started out from SIMULA 67, a language
created in the sixties by O. J. Dahl, B. Myrhaug and K. Nygaard at Oslo University.
SIMULA 67 already inc!udes the idea ofinheritance, but it is required that inherited
classes must have the same module nesting depth as the inheriting ones. The Warsaw
people cali this phenomenon one level inheritance.

The Norwegians probably had several reasons for this restriction. One predominant
reason is: Many level inheritance does not seem to be needed so often in applications.
Two further reasons might have been, first, it is rather weary ta define a reasonable
and natural, i.e. ALGOL-like or static scope semantics for many level inheritance, and
second, if one likes to retain Dijkstra's display register implementation technique then
registers must be reloaded several times when execution takes place inside the same
inheritance chain, e.g. a black, class or procedure body which has been extended by
inheritance classes. For one level inheritance this reloading is not necessary; efficient
implementation is simple and may follow traditional techniques as demonstrated by
SIMULA 67.

But the Warsaw group felt strongly that one level inheritance is tao tight a corset.
For example, it forces programmers ta write unnecessary copies of classes by hand,
especially when programs are to be changed or corrected. One level inheritance hinders
building up a fiexibly usable systems library of classes. The language BETA, another
successor of SIMULA 67, which has been defined by researchers at the universities of
Aarhus and Oslo independently of the Warsaw group, has many level inheritance too.

So a many level prefixing semantics for LOG LAN has been defined at Warsaw and
the known display register implementation technique has been drastitally modified such
that register reloading in prefix chains is no longer needed.

But there was a price to pay. The semantics was not fully natural, with fully static
scope, and it was not invariant against bound renamings. This so-called quasi static

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

IV

scope semantics behaved between static scope as in ALGOL or PASCAL and dynamic
scope as in early LISP. Furthermore, the original semantics definition did not fully
satisfy aesthetic requirements because of its reference to an implementing machine with
a run time stack to store activation records.

These drawbacks have been eliminated in close cooperation with our Warsaw col
leagues. We have defined an operational, static scope, ALGOL-like rewrite or copy rtÙe
semantics. Rewrite rules for LOG LAN '88 are to be defined not only for procedure
and function calls, but also for class generations and block entries. This definition style
remains ftÙly at the programming language level without reference to any implementa
tion.

Furthermore, we have observed that static scope semantics does not need to be
inefficient. On the contrary, it is much more efficient than quasi static scope semantics
with its remaining dynamic scope elements although the latter semantics is oriented at
a specifie implementation. Quasi static scoping needs as many display registers as there
are modules in a LOGLAN program, say fJ modtÙes, whereas for static scoping the
number of necessary display registers can be bounded by the maximal modtÙe nesting
depth v , which is usually much less than fJ, and still no reloading inside a prefix chain
is demanded.

For implementing BETA, which also adheres to the static scoping philosophy, S.
Krogdahl has proposed to construct a code generation optimizer which makes display
register reloading for the execution of any inheritance chain more efficient. In the light
of Krogdahl's proposai our observation can be formulated in the following manner:
reloading can always be optimized in such a way that at most v registers need to be
loaded when an inheritance chain is entered, and reloading is not necessary at ail inside
a chain. We could never do better because SIMULA and ALGOL need exactly this
number vof registers.

In his dissertation M. Krause has proved the correctness of the novel implementation
technique. In addition, A. Kreczmar and M. Warpechowski have come up with a very
nice and elegant axiomatic theory on static and dynamic algebras for which LOGLAN
'88 programs are models. Both this theory and the new implementation technique are
an outflow of considerations about what static scoping really means.

LOG LAN '88 has only mono inheritance and does not provide multiple inheritance as
languages like PARAGON, SMALLTALK or ADA do. BETA does not provide multiple
inheritance either for the same reasons: an acceptable and consistent semantics and a
good implementation technique has still to be found out.

But critics should be fair towards LOGLAN with respect to missing multiple inherit
ance. Module nesting is another implicit direction of inheritance such that LOGLAN
really features two dimensions of inheritance. Both theoretical investigation and existing
efficient implementation demonstrate that these two combined inheritance dimensions
allowa very clear and satisfying treatment. Other languages have drawbacks also: PAR
AGON remains with one level inheritance as far as we can see, SMALLTALK has no
module nesting, and the language definition of ADA does not allow exploitation of the
power of proper inheritance chains although they are available in theory.

l believe that intensive studies of static scoping in object oriented languages will
eventually result in appropriate semantics definitions and implementations of languages

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

v

where multiple and many level inheritance, module nesting and static scoping occur
simultaneously. Flat languages without module nesting like SMALLTALK are much
better off and can avoid many semantics and implementation problems. But in my
eyes, fiat programming style should not be the software engineering future. Sure, in
connection with module nesting, global output parameters .must be treated with great
care (sideeffects), but input parameters are much more often needed. And global in
put parameters are quite harmless and even advantageous. They save much program
writing work and their parameter transmissions are more efficient than local parameter
transmissions.

Since LOG LAN '88 allows functional arguments for procedures, functions and classes
and functional results of functions, this language goes noticably beyond many other
practically usable programming languages. LOGLAN '88 has the full power of higher
functional programming languages with typing, and the several existing LOGLAN im
plementations demonstrate that higher functionality does not create serious implemen
tation difficulties, not even in connection with object orientation, coroutines and pro
cesses.

Reasonable modern programming languages should allow procedures and functions
as arguments. Among other advantages, such parameters and their transmissions rep
resent a simple efficient control mechanism for stack automata activities of arbitrary
complexity. We should not forget that without such parameters control has often to be
done by expending data manipulation and inquiries.

A most appealing feature of LOG LAN '88 is its incorporation and treatment of
pro cesses. SIMULA 67 already has coroutines the syntactical structure and dynami
cal behaviour of which are somewhat close to processes. So it is reasonable that the
Warsaw group has come up with a most elegant and harmonious integration of pro
cesses in LOGLAN '88. Processes are objects as classes, procedures, functions and
coroutines are. Processes are generated and assigned to appropriate variables similar
to classes and coroutines. The authors of LOGLAN have provided synchronous and
asynchronous communications by so-called alien procedure calls and send procedure
statements, respectively. LOGLAN's alien calls generalize ADA's rendezvous concept
which BETA has employed also.

The object oriented programming language LOG LAN '88 which is put forward in
this report has been implemented on quite a series of computers and processors, as the
authors point out in their preface. LOGLAN '88 is a practically usable programming
language. So the informatics community is invited to experiment with this language,
especially in the areas of program structuring and communicating pro cesses in order to
get further experience, to compare with other approaches and to stimulate discussions
of programming language and software engineering concepts.

Kiel, September 1989 Hans Langmaack

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

CONTENTS

1

1 Terminology and Notation Rules 7

2 Lexical and Textual Structure 9

2.1 Comments 9
2.2 Identifiers 10
2.3 Reserved Words 11
2.4 Delimiters 12
2.5 Numeric Literals 12
2.6 Boolean Li terals 13
2.7 Character Literals 14
2.8 String Literals 14

3 Units 15

3.1 Program Units 15
3.2 Unit Declaration 16
3.3 Local En ti ties and the Declarative Part 17
3.4 Unit Instances 18

4 Types 19

4.1 Primitive Types 21
4.1.1 Integer Types 22
4.1.2 Real Types 23
4.1.3 Boolean Types 25
4.1.4 The Character Type 26
4.1.5 The String Type 27
4.2 Discrete Types 27
4.2.1 Enumeration Types 28
4.2.2 Subtypes 30
4.3 Composite Types 31
4.3.1 Static Array Types 32
4.3.2 Record Types 33

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VIII

4.4 File Types 34
4.5 Reference Types 35
4.5.1 Class Types 36
4.5.1.1 Class and Object Attributes 37
4.5.1.2 The Class Generator 39
4.5.2 Adjustable Array Types 40
4.5.2.1 The Adjustable Array Type Declaration 40
4.5.2.2 The Array Generator 41
4.5.3 The Copy Operator 43
4.5.4 The Kill Statement 44
4.6 Subprogram Types 45
4.7 Type Consistency 46

5 Variables and Constants 49

5.1 Variable Declarations 49
5.2 Constant Declarations and Aggregates 50

6 Names and Expressions 52

6.1 Names 52
6.1.1 Simple Names 52
6.1.2 Indexed N ames 53
6.1.3 Dotted Names 55
6.1.4 Binding N ames 56
6.2 Expressions 57
6.2.1 Expression Computation 58
6.2.2 Arithmetic Expressions 59
6.2.3 Boolean Expressions 61
6.2.4 Static Expressions 62
6.3 Qualifications 63

7 Statements 64

7.1 Simple Statements 64
7.2 Compound Statements 66
7.2.1 Conditional Statements 66
7.2.2 Case Statements 68
7.2.3 Loop Statements 69

8 Unit Specification, Unit Body and Entities Accessibility 73

8.1 Complete Unit Definition 73
8.2 Separate Specification and Continued Unit Declaration 75

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

9

9.1
9.2

10

10.1
10.2

11

12

12.1
12.2
12.3
12.4
12.5

13

14

14.1
14.2

15

15.1
15.2
15.3

16

16.1
16.2
16.3
16.4

Unit Parameterization

Parameter Passing Modes
Parameter List Consistency

Subprograms

Subprogram Declaration
Subprogram Call

IX

Classes

Inheritance

Inberitance Sequences
Membership Operators
Concatenation of Local Entities
Concatenation of Statements
Virtual Subprograms

Blocks

Identifier Binding Rules

Designating the Local Entities of a Unit
Direct and Indirect Binding

Coroutines

Coroutine Declaration and Generation
Coroutine Control Statements
Coroutine Object Termination

Pro cesses

Process Declaration and Generation
Process Communication by Alien Calis
Process Communication by Send Statements
Process Termination and Dealiocation . . .

78

79
80

82

82
84

85

88

88
89
90
91
93

95

97

97
98

101

101
102
104

105

106
107
110
111

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

17

17.1
17.1.1
17.1.2
17.1.3
17.1.4
17.2
17.3

18

18.1
18.2
18.3
18.3.1
18.3.2
18.4

19

20

x

Exception Handling

Exception Handling in Sequential Computations
Signal Declaration
Signal Handlers
Signal Raising
Handler Actions
Exception Handling in Coroutines
System Signals

File Processing

File Categories .
Permanent and Scratch Files
1/0 Statements
Text 1/0 Statements
Binary 1/0 Statements
Termination of File Processing

Bibliography .

Index

112

112
112
113
114
117
120
122

123

123
124
124
124
126
128

129

131

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

