lRST

BIBLIOTHEQUE DU C

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

414

Antoni Kreczmar
Andrzej Salwicki
Marek Warpechowski

LOGLAN '88 —

Report on the
Programming Language
With the collaboration of Bolestaw Ciesielski,

Marek Lao, Andrzej Litwiniuk, Teresa Przytycka,

Jolanta Warpechowska, Andrze|] Szafas,
Danuta Szczepariska-Waserszirum

Foreword by Hans Langmaack

SpringerVerlag
Berlin Heidelberg New York London Paris Tokyo HongKong

BIBLIOTHEQUE DU CERIST

Editorial Board
D. Barstow W.Brauer P. Brinch Hansen D, Gries D. Luckham
C. Moler A.Pnueli G. Seegmiilier J. Stoer N. Wirth

Authors

Antoni Kreczmar

Andrzej Salwicki

Marek Warpechowski

Institute of Informatics, University of Warsaw
PKiN, room 850, P-00901 Warsaw, Poland

CR Subject Classification {1987): D.3.2

ISBN 3-540-62325-1 Springer-Veriag Berlin Heidelberg New York
ISBN 0-387-52325-1 Springer-Verlag New York Berlin Meidelberg

This work is subject to copyright. Al rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-usa of illustrations, recitation,
broadcasting, reproduction on microfilms orin other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of lune 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidalberg 1990
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr,
2145/3140-543210 — Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Foreword

It is a pleasure for me to comply with the editors’ desite to write a Foreword to
the report on the object oriented programming language LOGLAN '88 which has been
created by the informatics research group of A.Kreczmar and A. Salwicki at War-
saw University. The authors have indeed succeeded in defining and implementing a
fully typed programming language of the ALGOL-PASCAL-family where more modern
notions like objects, inheritance, processes and communications are harmoniously inte-
grated with more established concepts like block structure, static scoping and higher
functionality. The Warsaw group has come up with a characteristic semantical and
implementational perception of the notion object which strongly supports LOGLANs
homogeneous language design.

In this foreword, I would prefer not to describe all aspects of this language and
compare them with all other existing approaches; this would overcharpge me at the
moment since object oriented programming is an exploding area. I would prefer to be
a companion of our Warsaw colleagues, to say a little about my personal acquaintance
with LOGLAN and to address some of its language constructs, their semantics and
implementations. _

Already in the seventies, the Warsaw group started out from SIMULA 67, a language
created in the sixties by O. J. Dahl, B. Myrhaug and K. Nygaard at Oslo University.
SIMULA 867 already includes the idea of inheritance, but it is required that inberited
classes must have the same module nesting depth as the inheriting ones. The Warsaw
people call this phenomenon one level inheritance.

The Norwegians probably had several reasons for this restriction. One predominant
reason is: Many level inheritance does not seem to be needed so often in applications.
Two further reasons might have been, first, it is rather weary to define a reasonable
and natural, i.e, ALGOL-like or static scope semmantics for many level inheritance, and
second, if one likes to retain Dijkstra’s display register implementation technique then
registers must be reloaded several times when execution takes place inside the same
inheritance chain, e.g. a block, class or procedure body which has been extended by
icheritance classes, For one level inheritance this reloading is not necessary; efficient
tmplementation is simple and may follow traditional techniques as demonstrated by
SIMULA 67. _

But the Warsaw group felt strongly that one level inheritance is too tight a corset.
For example, it forees programmers to write unnecessary copics of classes by hand,
especially when programs are to he changed or corrected. One level inheritance hinders
building up a flexibly usable systems library of classes. The language BETA, another
suecessor of SIMULA 67, which has been defined by researchers at the universities of
Aarhus and Oslo independently of the Warsaw group, has many level inheritance oo,

So a many level prefixing semantics for LOGLAN has been defined at Warsaw and
the known display register implementation technique has been drastically modified such
that register reloading in prefix chains is no longer needed.

But there was a price to pay. The semantics was not fully natural, with fully static
scope, and it was net invariant against bound renamings. This so-called quasi static

BIBLIOTHEQUE DU CERIST

scope semantics behaved between static scope as in ALGOL or PASCAL and dynamic
scope as in early LISP. Furthermore, the original semantics definition did not fully
satisfy aesthetic requirements because of its reference to an implementing machine with
a run time stack to store activation records.

These drawbacks have been eliminated in close cooperation with our Warsaw col-
leagues. We have defined an operational, static scope, ALGQOL-like rewrite or copy rule
semantics. Rewrite rules for LOGLAN 88 are to be defined not only for procedure
and function calls, but also for class generations and bleck entries. This definition stvle
remains fully at the programming language level without reference to any implementa-
tion,

Furthermore, we have observed that static scope semantics does not need to be
inefficient. On the contrary, it is much more efficient than quasi static scope semantics
with its remaining dynamie scope clements although the latter semantics is oriented at
a specific implementation. Quasi static scoping needs as many display registers as there
sre modules in a LOGLAN program, say g modules, whereas for static scoping the
nummber of necessary display registers can be bounded by the maximal medule nesting
depth v , which is usually much less than u, and still no reloading inside a prefix chain
is demanded.

For implementiug BETA, which also adheres to the static scoping philesophy, S.
Krogdahl has proposed to construct a code generation optimizer which makes display
register reloading for the execution of any inheritance chain more efficient. In the light
of Krogdahl's proposal our cbservaiion can be formulated in the following manner:
reloading can always be optimized in such a way that al most »registers need to be
loaded when an inheritance chain is entered, and reloading is not necessary at all inside
a chain. We could never do better because SIMULA and ALGOL need exactly this
number ¥ of registers.

In his disserfation M. Krause has proved the correciness of the novel implementation
techmique. In addition, A. Kreczmar and M. Warpechowski have come up with a very
nice and elegant axiomatic theory on static and dynamic algebras for which LOGLAN
'88 programs are madels, Both this theory and the new implementation technique are
an outflow of considerations about what static scoping really means.

LOGLAN 88 has only mono inheritance and does not provide multiple inheritance as
languages ike PARAGON, SMALLTALK or ADA do. BETA does not provide multiple
inheritance either for the same reasons: an acceptable and consistent semantics and a
good implementation technique has still to be found out.

But crities should be fair towards LOGEAN with respeet to missing multiple inherit-
anee. Module nesting is another implicit direction of inheritance such that LOGLAN
rcally features two dimensions of inheritance. Both theoretical investigation and existing
efficient implementation demonstrate that these two combined inheritance dimensions
allow a very clear and satisfying treatment. (Other languages have drawbacks also: PAR-
AGON remains with one level inheritance as far as we can see, SMALLTALK has no
module nesiing, and the language definition of ADA does not allow exploitation of the
power of proper inheritance chains although they are available in theory.

I believe that intensive studies of static scoping in object oriented languages will
eventually result in appropriate semantics definitions and implementations of languages

BIBLIOTHEQUE DU CERIST

where multiple and many level inheritance, module nesting and static scoping occur
simultaneously. Flat languages without module nesting like SMALLTALK are much
better off and can avoid many semantics and implementation problems. But in my
eves, flat programming style should not be the software engineering future. Sure, in
connection with module nesting, global output parameters must be treated with great
care (sideeffects}, but input parameters are much morc often needed. And global in-
put parameters are quite harmless and even advantageous. They save much program
writing work and their parameter transmissions arc more efficicnt than local parameter
{ransinissions.

Sinee: LOGLAN '88 allows functional arguments for procedures, functions and classes
and functional results of functions, this language goes noticably beyond many other
practically nsable programming languages. LOGLAN 88 has the full power of higher
functional programming langnages with typing, and the several existing LOGLAN im-
plementations dernonstrate that higher functionality does not create serious implemen-
tation difficulties, not cven in conneetion with object orientation, coroutines and pro-
cesses.

Reasonable modern programming languages should allow procedures and functions
as arguments. Among other advantages. such parameters and their transmissions rep-
resent a simple efficient contrel mechanism for stack automata activities of arbitrary
complexity. We should not forget that without such parameters control has often to be
done by expending data manipulation and inquiries,

A most appealing feature of LOGLAN ’88 is its incorporation and treaiment of
processes. SIMULA 67 already has coroutines the syntactical structure and dynami-
cal behaviour of which are somewhat close to processes. So 1t 1s reasonable that the
Wharsaw group has come up with a most elegant and harmonious integration of pro-
cesses in LOGLAN 88, Processes are objects as classes, procedures, functions and
coroutines are. Processes ave generated and assigned to appropriate variables similar
1o classes and coroutines. The authors of LOGLAN have provided synchronous and
asynchronous communications by so-called alien procedure calls and send procedure
statements, respectively. LOGLAN’s alien calls generalize ADA’s rendezvous concept
which BETA has employed also.

The object oriented programming language LOGLAN 88 which is put forward in
this report has been implemented on quitc a series of computers and processors, as the
authors point out in their preface. LOGLAN 88 is a practically usable programming
language. So the informatics community is invited to experiment with this language,
especially in the areas of program strueturing and communicating processes in order to
get further experience, to compare with other approaches and to stimulate discussions
of programming language and software engineering concepts.

Kiel, September 1989 Hans Langmaack

1SI430 NAd 3INO3IHLOIT49Id

BIBLIOTHEQUE DU CERIST

CONTENTS

Preface \\.‘ea._f

1 Terminology and Notation Rules
2 Lexical and Textual Structure
21 Commenis 0t e e e e e e e
2.2 Identifiers 0., Ce
2.3 Reserved Wordso,
2.4 Delimiters e e e e e e e e e e e
2.5 Numeric Literals e e e e e e e e e e e e e
26 Boolean Literals e e e e e e e e e e e e e
2.7 Character Literals,
2.8 String Literals L L0000
3 Units oLl
31 Program Units
3.2 Unit Declaration . . . - e e e
3.3 Local Entities and the Declarative Part
3.4 Unit Instances oL 0000 s o e e
4 Types o o o o e e e e e e e
4.1 Primitive Types o000l
431 Imteger Types vt e e e e e e
412 RealTypes Lo
4.1.3 BooleanTypes e e e e e e e e e e e e
414 The Character Type e e e
415 The StringType o e
4.2 Diserete Types« « . i o e e e e e e e
421 EnumerationTypes L0
422 Subtypes e e e e e e e e e e e e
4.3 Composite Typeso oL
4.3.1 Static Array Types oL oL 0oL
432 RecordTypes e e e e e e e

BIBLIOTHEQUE DU CERIST

Vil

4.4

4.5
4.5.1
4.5.1.1
4.5.1.2
4.5.2
4.5.2.1
4.5.2.2
4.5.3
4.5.4
4.6

4.7

5.1
5.2

6.1

6.1.1
6.1.2
6.1.3
614
6.2

6.2.1
8.2.2
6.2.3
6.2.4
6.3

7.1
7.2
7.2.1
7.2.2
7.2.3

3.1
8.2

File Types o . oo
Reference Typeso
Class Typeso
Class and Object Attributes
The Class Gemerator v v v v v v o
Adjustable Array Types
The Adjustable Array Type Declaration
The Array Generator
The Copy Operator e e e e e
The Kill Statement
Subprogram Typeso
Type Consistency« + . . 0 e Coe e

Variables and Constants

Variable Declarationso
Constant Declarations and Aggregates,

Names and Expressions

Names L ol e e e
Simple Names0 e
Indexed Names
Dotted Nameso
Binding Names o oo
Expressions00
Expression Computationo
Arithmetic Expressions

Boolean Expressions Lo
Static Expressions Lo oL
Qualifications 0 o e e e e e e e e e

SBtatements

Simple Statements 0oL

Compound Statements oo L.
Conditional Statements,
Case Statements o0 e
Loop Statements

Unit Specification, Unit Body and Entities Accessibility

Complete Unit Definition
Separate Specification and Continued Unit Declaration

49
49

50

52

52
52
53
35
36
57
58
59
61
62
63

64

64
66
66
68
69

BIBLIOTHEQUE DU CERIST

9.1

9.2

10

10.1

10.2

11

12

121
12.2
12.3
124
12.8

13

14

141
4.2

15

15.1
15.2
15.3

16

i6.1
16.2
16.3
164

Unit Parameterization
Parameter Passing Modes
Parameter List Consistency
Subprograms
Subprogram Declaration
Subprogram Call

Classes

Inheritance

Inheritance Sequences
Membership Qperators
Concatenation of Local Entltles

Concatenation of Statements
Virtua! Subprograms

Blocks

Identifier Binding Rules
Decsignating the Local Entities of a Unit
Direct and Indirect Binding
Coroutines

Coroutine Declaration and Generation
Coroutine Conircl Statements
Coroutine Object Termination
Processes

Process Declaration and Generation .
Process Communication by Alien Calls

Process Communication by Send Statements

Process Termination and Deallocation

78

kit

80

82

32

84

85

88

88
g9
90
91
93

95

97

97
93

161

161
1G2
104

108

166
167
110
112

BIBLIOTHEQUE DU CERIST

17

17.1
17.1.1
17.1.2
17.1.3
17.14
17.2
17.3

18

18.1
18.2
18.3
18.3.1
18.3.2
18.4

19

20

Exception Handling

Exception Handling in Sequential Computations
Signal Declaration oL
Signal Handlerso e
Signal Raising00 00000 o
Handler Actions00
Exception Handling in Coroutines
System Signals e e e e e e

File Processing

File Categories - .« .« .« .o
Permanent and Scratch Files
I/O Statements, 0o e e
Text I/O Statementso L.
Binary I/O Statementso 0oL L L.

Termination of File Processing

112

112
112
113
114
117
120
122

123

123
124
124
124
128
128

129

131

