
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

407

J. Sifakis (Ed.)

Automatic Verification
Methods for
Finite State Systems
International Workshop, Grenoble, France
June 12-14, 1989
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Editorial

D. Barstow W.
C. Moler A. Pnueli

Editor

Sifakis
LGI-IMAG, BP 53X
F-38041 Grenoble Cedex, France

CR Classification F.3--4

ISBN 3-540-52148-8 SnlrlnrlPI'"_\fpr'l~n Berlin New York
ISBN 0-387-52148-8 New York Berlin Heidelberg

This work is subject to copyright. Ali
is concerned, specifically the rights
broadcasting, reproduction on microfilms or in "tn,ar',Ma,,,,,,

of this publication or parts thereof Îs only permitted unc:ierthe, Dn:)Vi~liorls nt ml'! bemlan
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always
paid. Violations faU under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

PREFACE

This volume contains the proceedings of the workshop on Automatic Verification Methods for

Finite State Systems held at Grenoble from 12 to 14 June 1989. The workshop was organised

on the initiative of Ed Clarke, Amir Pnueli and the Editor. It was sponsored by C-cube, the

French National Project on Concurrency. Its technical organisation was supported by the IMAG

Institute.

This workshop is the first international meeting entirely devoted to the verification of finite state

systems. Its organisait.on has been motivated by the growing interest in this problem due to the

conjunction of two independent facts. First, finite state models are very often used to represent

complex concurrent systems or their abstractions in several application areas such as hardware,

protocols or systems of real-time control. Second, the emergence over the last decade of

specification formalisms with weIl established underlying verification theories such as process

algebras and temporallogics.

The workshop brought together 120 researchers and practitioners interested in the development

and the use of methods, tools and theories for automatic verification of finite state systems. The

goal of the workshop was the comparison of various verification methods for finite state systems,

and tools to assist the application designer. The emphasis was not only on new research results

but also on the application of existing results to real verification problems.

The material included was prepared by the lecturers after the meeting took place. A few lecturers

failed to provide their manuscript on time and their contribution is not in this volume. The

proceedings are organised in 5 parts corresponding to sessions of the workshop. Each part

consists of a collection of long papers followed sometimes by a collection of short papers.

One may feel that the classification induced by this organisation is arbitrary, as one paper may

concern several parts; however, l believe that such a presentation helps the reader to appreciate the

importance and applicability of results for each approach and domain.

Part 1 is dedicated to verification methods and tools for process algebras and systems of

communicating processes. Most papers present verification tools for the comparison of transition

systems modulo some equivalence relation by using model reduction or axiomatic techniques.

Part 2 is a collection of papers on model checking for both linear and branching time temporal

logics.

Part 3 concerns the specification of timed systems.

Parts 4 and 5 contain papers dealing with the application of verification techniques in two

domains, respectively, protocol validation and hardware verification.

October 1989 Joseph Sifakis

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

CONTENTS

Process Algebras and Systems of Communicating Processes

G. Boudol, V. Roy, R. de Simone, D. Vergamini

Pro cess Calculi, from Theory to Practice: Verification Tools 1

R. Cleaveland, M. Hennessy

Testing Equivalence as a Bisimulation Equivalence .. Il

R. Cleaveland, 1. Parrow, B. Steffen

The Concurrency Workbench ... 24

F. Maraninchi

Argonaute: Graphical Description, Semantics and Verification of Reactive Systems by Using

a Process Algebra .. 38

R. De Nicola, P. Inverardi, M. Nesi

Using the Axiomatic Presentation of Behavioural Equivalencesfor Manipulating ces
Specifications .. 54

P. Wolper, V. Lovinfosse

Verifying Properties of Large Sets of Processes with Network Invariants 68

1. Christoff

A Method for Verification of Trace and Test Equivalence ... 81

H. Krumm

Projections of the Reachability Graph and Environment Models 89

H. Tuominen

Proving Properties of Elementary Net Systems with a Special-Purpose Theorem Prover 97

H. Zuidweg

Verification by Abstraction and Bisimulation 105

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VI

Model

A. Arnold

MEC: A System for Constructing Transition 7

H. tiwmn,ger, M.D. a.D.
Fair SMG and Linear Time Model Checking 133

Z. Shtadler, O. Unlill[)erg

Network Grammars, Communication Behaviors and Automatic 151

C. Stirling, D. Walker

ces, Liveness, and Local Model in the Linear Time Mu-Calculus 166

B. Jonsson, A.H. Khan, Parrow

Implementing a Model Checking Algorithm Adapting Existing Automated l'ools 179

C. Jard, T. Jeron

On-Line Model Checking for Finite Linear Temporal Logic Specifications 189

Timed

D.L. DiU

Timing fls,surnDl:lOJ'1S and Verification Finite-State Concurrent

N. D. F. Uu;abdessielarn. A-C. Olory

Specifying, Programming and Verifying Real-l'ime Systems

Using a Synchronous Declarative Language

K.O. Larsen

197

213

Modal Specifications..... ,. 232

J.S. Ostroff

Automated Verification Timed Transition Models.. 247

W.G. Wood

Temporal Logic Case Study , 257

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VII

Protocol Validation

S. Aggarwal, D. Barbara, W. Cunto, M. Garey

The Complexity of CoUapsing Reachability Graphs .. 264

S. Graf, J.L. Richier, C. Rodriguez, J. Voiron

What are the Limits of Model Checking Methodsfor the Verification of Real Life Protocols? 275

P. Azema, F. Vernadat, J.-C. Lloret

Requirement Analysis for Communication Protocols 286

J. Quemada, S. Pavon, A. Femandez

State Exploration by Transformation with LOLA .. 294

M.C. Yuang, A. Kershenbaum

ParaUel Proto col Verification: The Two-Phase Algorithm and Complexity Analysis 303

Hardware Verification

A. Bronstein, C.L. Talcott

Formai Verification of Synchronous Circuits based on String-Functional Semantics:

The 7 Paillet Circuits in Boyer-Moore 317

J.R. Burch

Combining CTL, Trace Theory and Timing Models .. 334

J. Staunstrup, S.J. Garland, J.V. Guttag

Localized Verification of Circuit Descriptions' 349

O. Coudert, C. Berthet, lC. Madre

Verification of Synchronous Sequential Machines Based on Symbolic Execution 365

G.C. Gopalakrishnan, N.S. Mani, V. Akella

ParaUel Composition of Lockstep Synchronous Processesfor Hardware Validation:

Divide-and-Conquer Composition .. 374

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Process Calculi, from Theory to Practice: Verification Toois

Gérard Boudol
Valérie Roy *

Robert de Simone
Didier Vergamini t

l.N.R.l.A.
Route des Lucioles
Sophia-Antipolis

06561 Valbonne CEDEX
France

Abstract

We present here two software tools, AUTO and AUTOGRAPH. Both originated directly from
the basic theory of process calculi. Both were experim.ented on well-known problems to enhance
their accordance to users expectations.

AUTO is a verification tool for pro cess terms with finite automata representation. It com­
putes minimal normal forms along a variety of user parameterized semantics, including sorne
taking into account partial observation and abstraction. It checks for bisimulation equivalence
(on the normal forms) , and allows powerful diagnostics methods in case of failure.

AUTOGRAPH is a graphical, non syntactic system for manipulation of pro cess algebraic
terms as intuitively appealing drawings. It allows graphical editing by the user, but also visual
support for display of information recovered from analysis with AUTO.

1 Introduction

The theory of process calculi as started with CC S [Mil 80] resulted in a number of verifica­
tion tools designs, mostly in the case of terms with finitary representation (finite automata)
[CPS 89,BoC 88,GLZ 89]. Part of these attempts was AUTO[Ver 87b,LMV 87a], which originated
as a (strong- and weak-) bisimulation congruence checker on terms of the MEIJE algebra [Bou 85].

Such tools can easily build large transition systems and check two of them for bisimulation,
on a scale unmanageable by a human operator [Ver 86,Ver 88]. In addition the complexity of the
growth of these systems can be cut down to sorne extent by using the congruence properties in
order to reduce subterms first, before setting them in parallel. This is especially true for the weak
congruence. Specifie algorithms were studied, which are now fairly established. Such algorithms
proceed along the following line: first devise a normal form of sorne kind by reducing each term
individually, then perform the so-called partitioning algorithm to equate both terms to be proven
bisimilar.

*ENSMP-CMA Sophia-Antipolis

tCERICS Sophia-Antipolis

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

This was further in
Quotlen1ts of automata under various semantical criteria showed to be a promising way of analysis.
sy:nt,~ct,lC~H formalism for defining those reductions was then in order. We shaH present here the

state of the art in AUTO in this domain.
Along with the original definition of the MEIJE in [Bou came the notion of abstract

actions and abstraction criteria, which are a mechanism for defining levels of atomicity
with different granularity, and actuaHy move away from low-level detaHs of basic concrete actions.
It is a quite natural generalization of the ideas behind weak hisimulation, giving the user the
possibility to decide himself on what is to be relevant "experiment"performed on the
system. Similar ideas may he found in 85,Par Although we shaH further elaborate on
this later on, we can just say here that an abstract action is a set (usuaHy regular) of concrete
action sequences, to be thought of as "having the same meaning" , as long as this sort of experiment
is considered on the system.

One point of success is that in general transition systems are reduced drastically
in size. They can be considered as charaderistic· of a vision of the system. This is to be
contrasted with a temporallogic where statements are already imposed befme checking,
80 that one does not much out of an answer "no". When defining relevant abstract actions, the
user usuaUy provides (sets of) sequences with particular meaning which should· appear, as weIl as
others which should Dot. The presence of undesired actions in the quotient abstracted automaton
indicates at once in which conditions may take place, which is unvaluable information while
"debugging" a system. Experimenta were conducted in [Lec 89].

Use of AUTO showed that ofprocess terms was error-prone, due to misspelling
of names and other mistakes that could obscure the communication abilities.
This was the priee to pay for terms in such a low-Ievel formalism,Then a rep-
resentation of terrus was wanted both as more flexible and more immediate than a textual one,
Communications could be traced with Unes ports, instead of using the notations
of renaming and restriction operators, which induced most mistakes. ParaBel operators could also
be easily generalized to more than two processes for instance. Representation foBowed the Hnes of

79J.
The graphical system was named A UTOGRAPH It was not fully integrated with A DTO

so that both can be used to a extent independently. In particular, AUTOGRAPH's output
may easily be turned to any process calculus manipulation system.

In fact the future of AUTOGRAPHresides not 50 much in graphitaI edition, as languages tend
to far more complex than simple process algebras, but rather in graphical support of programs
skeletons, indu ding only their process structures, on which to visualize results of manipulation
<>fi'''I ... ·.,'''' from verification systems. This is nowadays our main direction of effort.

:2 A short ,rlp,u·l·int.ln.n of AUTOGRAPH

AUTOGRAPH is a system, fully endowed with multi-window facilities. Functions are
th]~ough a mouse but ton after selection of a menu in a, menu bar. We shaH not detaH

but rather focus on the nature of edited as well
fundions dedicated to· visua,lizations of interesting results. of typical

AUTOGRAPHie are pictured in the Let us just mention here that pictures may be
printed on paper (and in reports!). AUTOGRAPH then a translation
which makes look much nicer than on the screen types more
distinctIy too).

AUTOGRAPH knQws two main types of editable objects:

Networks
They represent terms and " "_LAJU."'. and are drawn as rectangular boxes. They usually

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

3

bear ports on their border, which are tied together with straight or broken lines to indicate
communications. A communication is caIled internaI if it does not pervade to the father box.
Communications need not be named so that aIl matters of renarnings and restrictions are
left to the system. The only pertinent names that are required upon signaIs communications
are the port names of innermost boxes, as weIl as communication names (eventuaIly on the
drawn lines) at the outermost level. These may not be guessed of course.

A box may contain a name in order for its content to be drawn in sorne other window
(windows have titles giving names to their full content). Subterms may be shared, so that
several boxes in the same window may bear the same name.

A box may also contain one automaton (at most) , in which case the display ofthis automaton
may not exceed the box boundaries.

In A UTOGRAPH one may retrieve information produced from AUTO: for example in an
AUTOGRAPH Net one may highlight the set of states (distributed among aIl components)
corresponding to a given state of a global system produced by AUTO. Then using this primary
feature we could display either equivalence classes of such states, browsing back and forth
through its scattered states; or behavior paths, by depicting the distributed state jumps,
as weIl as the performed actions and synchronisations at ports at any level up the graphic
pro cess tree. This work is still un der progress, but does not seem to make any problem.

Automata
They are represented by round-shaped vertices, which are joined by broken Hne edges. Both
edges and vertices may be narned, aithough it is mandatory for edges only.

An edge may actually be named several times, thereby representing several transitions at
once. Identically named vertices refer to the sarne state, but at most one of them may
have outgoing edges (it is then the state behavior "declaration", while the others are intro­
duced to avoid loops in drawings). In fact there exist several such short-hand conventions in
A UTOGRAPH allowing to simplify drawings. We shall not enter into details here.

Automata may be contained in boxes; alternatively there can be one residing directly inside
the window.

Automata representing system components shouid be entered by the user, as the model of his
problem. But one may also depict an automaton as resulting from analysis under AUTO. We
calI this "exploration". The automaton is not automatically positioned: instead, the initial
state is given, and then one-step transitions of any explored state are progressively provided
on demand. The reason for this choice was that automatic placement is often disappointing,
while progressive unfolding of the states and transitions may lead to interesting considerations
(much like simulations of systems).

3 A short description of AUTO

AUTO is a system consisting of a main toplevelloop, in which one may type commands. Commands
may be of various sorts (including input / output to and from files). But most of them bind identifiers
to results of functions applied to objects. Functions may be composed from a list of primary
functions, which constitute the heart of AUTO. Other usuai commands are those binding identifiers
to syntactic objects. In this case one has to invoke the corresponding parser explicitly (e.g. parse
x = a: stop is a command parsing a simple MEIJE term). In the former case one simply types
set y = function(...).

AUTO knows 6 main types: (process) terms, signaIs lists (for sorts of processes), automata (for
internaI representation of compiled systems), partitions (for internaI representation of equivalence
classes of states), patlis (for sequences of behaviors), and finally abstraction criteria.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

3.1 Reductions

Abstraction criteria, with several oUler snch as contexts syntactical
means for AUTO to characterize pl'ocess behaviors so as to l'cduce them further. An abstract
action is a set of sequences actions, and in AUTO a regular such set. A eriterion is collection
of specifie abstract actions, and in AUTO a finite such set.

Abstract actions lead to state systems which may
be more This reduction only retains properties, but this is under full
control of the user. In particular, when union of aH abstrad actions do es not add up to the full
free monoidof concrete actions, then certain of) behaviors may go unnoticed.
This amounts to a faÎrness assumption: such behaviors would not pertain to the abstract model.
Think of infinite in the weak bisimulation case for instance.

Short-hand notations for functions are used when the criterion to be applied is and well-
recognized. This is the case of course for weak bisimulation reduction, where wc call a-experiment

any sequence of concrete) actions· in T* : a : r*. This criterion is generalized to the case
where only some actions remain visible, while others are renamed to r.

We can now present a first set of functions in AUTO, sorne based on the abstradion mech-
anisms and sorne on more dassical reduction They aH share the property that they
nroclnc:p. normal forms for automata, from terms, each a given semantics. They use congru-
ence wherever possible. these functions may be For details of
application, see AUTO's Handbook [SV 89].

tta
constructs the fuH automaton co:rn:~sp'OIlldlng to a term.

mini
constructs a normal form automaton w.r. t. strong bisimulation.

obs
constructs normal form automaton W.r. t. weak bisimulation.

constructs a normal form automaton w.,r.t. elimination of r-loops and single r-transitions.

trace
constructs a normal form automaton w.I'.t. trace u.UL6""'E;V vuu •• ~." .. ,,, ,,.

dterm
constructs

exclusion

form automaton w.r.t. determinisation.

constructs a normal form automaton w.r.t. elimination of transitions whose as com­
pound actions, contain atomic dedared as in a parameter used the
function. Thus it trims away branches in the underlying

tau-sature
saturates an automaton transitive closure of the transitions 1"* : a : r* and r*.

abstract
abstrads automaton as parameter. Unlike previous func-
tions, this one does not take benefit of congruence properties.

Other similar functions should nr.'\O'T,.,"""'v,,,,h, add up to this

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

5

functions is also envisaged, to give name to most popular reduction schemes. An example of
desirable function is the context-dependent reduction, where one trims away behaviors of the
process which are not part of the ones allowed by a given context. A context is a set of sequences
of actions and thus amounts to an abstract action.

3.2 Comparisons

Of course resulting automata may be compared, through any of the two functions:

eq
for checking strong bisimulation, and

obseq
for checking weak bisimulation.

It was foreseen that the result of these functions should be a temporal logic formula in case of
failure, but other recent efforts in this domain have proved it to be a difficult matter, especially
due to the size of this synthesised formula. A progressive simultaneous exploration of the two
terms seems a more promising method, even though it will be less automated.

Here again several further functions could be added, mainly the preorder comparisons, and a
function providing the result of testing a process by a given observer (with may/must options).

3.3 Analysis

None of the preceding functions keeps unnecessary intermediate informations, for (space) efficiency
reasons. For example r-behaviors do not remember which synchronizations produced them. Still,
information is conveyed at two specific points, in the naming of states:

• The name of astate resulting from the expansion of a parallel system is the ordered list of
states in components .

• The name of a state in a quotient automaton is picked from a representative of this class in
the original automaton.

This information is enough for most cases, for it allows one to retrieve states and paths in
original automata from reduced ones. So observations in our "partial view" systems may be uplifted
to the most concrete automata. Nowa further step would be to regain this information on the
process itself. This amounts to retrieve which (sequences of) synchronisations led to r-behaviors,
knowing each time the start and target states. It is under way.

Corresponding functions are:

structure

path

provides the external naming of a state in a given automaton. Otherwise names are referred
by integer internaI row.

provides a path in a given automaton leading from astate to another (or from the initial
state). This function should be completed so as to allow an abstract action to indicate
admissible behaviors for performed (concrete) actions along this path.

Of course the internaI names of states as required by the structure function above should not be
user-provided, but obtained by the system. To this end there are functions computing (sets of)
states enjoying sorne properties:

dead
returns the deadlock states of an automaton

diverge
returns potentially diverging states of an automaton, those with real r-Ioops (or livelocks).

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

6

refusaIs
returns states which may to pe:rtorm a outside a given list signaIs.

proper mixture abstraction these funetions may allow an ,u,:;. •. ,v",,,,

concrete result, as sketched in the of section 4. We are not going to this type
of functionality in AUTO, trying to spot every property of interest in the literature. Instead,
collaboration with systems more dedicated to the definition and of such
properties [Am 891 seems more fruitful.

In order to realize this, while "'1-t,,.Ir to the main body of process calculi, we introduced a
function performing the partitioning for bisimulation reduction from a given
initial partition. It is called refined-mini. It may also help the user defininghis own semantical
reduetion criteria at will.

Finally, it should be remarked that original partition may itself be produeed by another
partitioning with abstraction formulation or otherwise. More gen-

one may at any moment want to grasp and which states are equivalent w.r.t. a
given semantics. This is the purpose of the AUTO funetions:

returns (an internaI relncserltation
w,r. t. strong bisimulation.

with weak bisimulation.

the collection of e(rm"\i'au~n(·.e classes in an auto maton

crit-partition
same with bisimulation paraIneter'lzl!'~d given abstraction criterion.

row
row of the cIass to which

dass
n.,.., ~Jlru·'" the list of elements in gîven its row.

As we mentioned before, both and Ul,,'a.H~H~,C classes of states cau be Ullj'!JH:!,Yt;~U with Au-
TOGRAPH on a graphical version of process terms.

3.4 Managing the complexity

There i.s no miracle to what AUTO may do in this domain. Efficient data structures and al­
gorithms may push the limit a litt le further, 80 that for the Ume being systems of 104 states
and around 105 transitions may be dealt with in few minutes. For larger systems the prob­
lem actually cornes from storage limita, more th an time bounds. Sc the solutions advocated in
AUTO consist in never building full global systems, but instead only reductions of them rely­
ing on congruence properties, further enhanced by the partial elimination of unvisible actions,
or by abstraction. Another feature here is the division of usuai functionalities into smaHer-grain
functions, allowing finer reduction strategies for the user. For example it was found that the
usuaI weak redudion algorithm, which corresponds to mini(tau-sature(tau-simpl(process»)
(assuming that process contains but one level of paraUd 80 that we leave away eongru­

probIems replaced with benefit by mini(tau­
This is because the transitive completion of transitions

performed by tau-sature is actuaHy in practice the most consuming of ouralgorithrns, especially
in space. 80 any reduction before thisphase is welcome.

Still, observing the complexity is not easy. AUTO provides through a collection of f1.ag
options the tracing of various measures: time,sizes of subterms at parallel construction, maximal
length of r-sequences to name a few.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

