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PREFACE

This volume contains the proceedings of the workshop on Automatic Verification Methods for
Finite State Systemns held at Grenoble from 12 to 14 June 1989. The workshop was organised
on the initiative of Ed Clarke, Amir Pnueli and the Editor. It was sponsored by C-cube, the
French National Project on Concurrency. Its technical organisation was supported by the IMAG
Institute,

This workshop 1s the first international meeting entirely devoted to the verification of finite state
systems. Hs organisarion has been motivated by the growing interest in this problem due to the
conjunction of two independent facts. First, finite state models are very often used to represent
complex concurrent systems or their abstractions in several application areas such as hardware,
protocols or systems of real-time control. Second, the emergence over the last decade of
specification formalisms with well established underlying verification theories such as process
algebras and temporal logics.

The workshop brought together 120 researchers and practitioners interested in the development
and the use of methods, tools and theories for automatic verification of finite state systems. The
goal of the workshop was the comparison of various verification methods for finite state systems,
and tools to assist the application designer. The emphasis was not only on new research results
but also on the application of existing results to real verification problems,

The material included was prepared by the lecturers after the meeting ook place. A few lecturers
failed to provide their manuscript on time and their contribation is not in this volume. The
proceedings are organised in 5 parts corresponding to sessions of the workshop. Each part
consists of a collection of long papers followed sometimes by a collection of short papers.

Onc may feel that the classification induced by this organisation is arbitrary, as one paper may
concern several parts; however, 1 believe that such a presentation helps the reader to appreciate the
importance and applicability of resuolts for each approach and domain.

Part 1 is dedicated to verification methods and tools for process algebras and systems of
communicating processes. Most papers present verification tools for the comparison of transition
systerns modulo some equivalence relation by using model reduction or axiomatic techniques.
Part 2 is a collection of papers on model checking for both linear and branching time temporul
logics.

Part 3 concerns the specification of timed systems,

Parts 4 and 5 contain papers dealing with the application of verification techniques in two
domains, respectively, protocol validation and hardware verification,

October 1989 Joseph Sifakis
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Process Calculi, from Theory to Practice: Verification Tools

Gérard Boudol
Valérie Roy *
Robert de Simone
Didier Vergamini '
INR.IA.

Route des Lucioles
Sophia-Antipolis
06561 Valbonne CEDEX
France

Abstract

We present here two software tools, AUTO and AUTOGRAFPH. Both originated directly from
the basic theory of process calculi. Both were experimented on well-known problems to enhance
their accordance to nsers expectations.

AUTO is a verification tool for process terms with finite automata representalion. It com-
putes minimal normal forms along a variety of nser parameterized semantics, including some
taking into account partial observation and abstraction. It checks for bisimulation equivalence
(on the normal forms), and allows powerful diagnostics methods in case of failure.

AUTOGRAPH is a graphical, non syntactic system for manipulation of process algebraic
terms as intuitively appealing drawings. It allows graphical editing by the user, but also visnal
support for display of information recovered from analysis with AuTo.

1 Introduction

The theory of process calculi as started with CCS [Mil 80| resulted in a number of verifica-
tion tocls designs, mostly in the case of terms with finitary representation (finite aulomata)
[CPS 89,BoC 88,GLZ 89]. Part of these attempts was AUTO[Ver 87b,LMV 87al, which criginated
as a (strong- and weak-) bisimulation congruence checker on terms of the MEIJE algebra [Bou 85].

Such tools can easily build large transition systems and check two of them for bisimulation,
on a scale unmanageable by a human operator [Ver 86,Ver 88|, Tn addition the complexily of the
growth of these systems can be cut down to some extent by using the congruence properties in
order to reduce snbterms first, before setting them in parallel. This is especially true for the weak
congruence. Specific algorithms were studied, which are now fairly established. Such algorithms
proceed along the following line: first devise a normal form of some kind by reducing each term
individually, then perform the so-called partitioning algorithm to equate both terms to be proven
bisimilar.

*ENSMP-CMA Sophia-Antipolis
TCERICS Sophia-Antipolia
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This approach was pushed further s AUTO 8V 89, under tae teachings of pracine. Reducilons
to quotients of automata under various sernantical criteria showed to be a promising way of analysis.
A syntactica! formalism {or defining those reductions was then in order. We shall present here the
state of the art in AUTC in this domair.

Along with the original definition of the MEfIE algebra in [Bou 85} came the notion of abstract
aciions and abstraction criteria, which are a powerful mechanism for defining levels of atemicity
with different granularity, and actually move away from low-lavel details of basic concrete actions.
It is a quite natural generalizailon of the ideas behind weak basirnulaiion, giving the user the
possibility to decide himself on what is to be considered a relevant “experiment” perfermed on the
system. Bimilar jdeas may be found in [HeMi 85,Par 79]. Although we shall further elaborate on
this later on, we can just say here that an abstract action is a set {usually regular) of concrete
action sequences, to be thought of as “having the same meaning”, as long as this sort of experiment
is coneidered on the system.

One point of success is that in generzl abstracted transition systems are reduced drastically
in size. They can be considered as characteristic of a partial vision of the system. This is to be
contrasted with a temporal logic approach where statements are already irapesed before checking,
so that one does not get much out of an answer “ne”. When defining relevant abstract actions, the
aser usually provides {sats of) sequences with particular meaning which should appear, as well as
others which should not. The presence of undesired actions in the guotient abstracted automaton
indicates at once in which conditions they may take place, which is unvaluable information while
“debugging” a system. Experiments were conducted in [Lec 89].

Use of AUTO guickly showed that sditing of process terms was error-prone, due to misspelling
of signal names and other deceptive mistakes that could obscure the communication abilities.
This was the price to pay for writing terms in such a low-level formalism.Then a graphical rep-
resentation of terms was wanted both as more flaxibie and more immediate than a textual one,
Clommunications could be traced with iines joining ports, instead of using the lengthy notations
of renamming and restriction operators, which induced most misiakes, Parallet operators could also
be easily generalized to more than two processes for instance. Represeniation followed the lines of
flowgraphs [Mil 79].

The graphical system was named AUTOGRAPH [RS 88l It was not Mully integrated with AUTO
s0 that both can be used to a Jarge extent independently. In particular, AUTCGRAFH's output
may easily be turned to any process calculus manipulation system.

In fact the future of AUTOGRAPH resides not so much in graphical edition, as full languages tend
to be far more complex than simple process algebras, bit rather in graphical support of programs
skeletons, including only their process structures, on which to visualize results of manipulation
analysis from verification systems. This is nowadays our main direction of eflort.

% A short descripiion of AUTOGRAPH

AUTOGRAPH is a graphica! system, fully endowed with multi-window facilities. Functions are
applied through a mouse button after selection of 2 menu in a menu bar. We shall not detail
AUTCCRAPH penera functionalities here, but rather focus on the nature of edited objects a5 well
25 functions specifically dedicated to visualizaiions of interesting results, Examples of typical
AUTOGRAPHIc drawings are pictured in the sequel. Lei us just mention here that pictures may be
printed on paper {and in reports!}. AUTOGRAPH generates then a specific Pestscript translation
which makes drawings lock much picer than on the screen (and which separates ohject types more
distinctly too).
AUTOGRAPH kaows two main types of editable objects:

Neyworks
They represent ierms and subierms, and are drawn as rectanguiar boxes. They usuaily
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bear ports on their border, which are tied together with straight or broken lines to indicate
communications. A communication is called internal if it does not pervade to the father box.
Communications need not be narned so that all matters of renamings and restrictions are
left to the system. The only pertinent names that are required upon signals communications
are the port names of innermost boxes, as well as communication names (eventually on the
drawn lines) at the cutermost level. These may not be guessed of course.

A box may contain a name in order for its content to be drawn in some other window
(windows have titles giving names to their full content). Subterms may be shared, so that
several boxes in the same window may bear the same name.

A box may also contain one automaton {at most), in which case the display of this automaton
may not exceed Lthe box boundaries.

In AUTOGRAPH one may retrieve information produced from AUTO: for example in an
AUTOGRAPH Net one may highlight the set of states (distributed among all components)
corresponding to a given state of a global system produced by AUTC. Then using this primary
feature we could display either equivalence classes of such states, browsing back and forth
through its scattered states; or behavior paths, by depicting the distributed state jumps,
as well as the performed actions and synchronisations at ports at any level up the graphic
process tree. This work is still under progress, but does not seem to make any problem.

Automata
They are represented by round-shaped vertices, which are joined by broken line edges. Both
edges and vertices may be named, although it is mandatory for edges only.

An edge may actually be named several times, thereby representing several transitions at
once. Identically named vertices refer to the same state, but at most one of them may
have outgoing edges {it is then the state behavior “declaration”, while the others are intro-
duced to avoid loops in drawings). In fact there exist several such short-hand conventions in
AUTOGRAPH allowing to simplify drawings. We shall not enter into details here.

Automata may be contained in boxes; alternatively there can be one residing directly inside
the window.

Automata representing system components should be entered by the user, as the model of his
problem. But one may also depict an automaton as resulting from analysis under AUTO. We
call this “exploration™. The autornaton is not automatically positioned: instead, the initial
state is given, and then one-step transitions of any explored state are progressively provided
on demand. The reason for this choice was that automatic placement is often disappointing,
while progressive unfolding of the states and transitions may lead to interesting considerations
(much like simulations of systems).

3 A short description of AUTO

AUTO is a system consisting of a main toplevel loop, in which one may type commands. Commands
may be of various sorts (including input/output to and from files). But most of them bind identifiers
to results of functions applied to objects. Functions may be composed from a list of primary
functions, which constitute the heart of AUTO. Other usual commands are those binding identifiers
to syntactic objects. In this case one has to invoke the corresponding parser explicitly {e.g. parse
x = aistop is a command parsing a simple MEIJE term). In the former case one simply types
Bet ¥ = function(...}.

AUTO knows 6 main types: (process) terms, signals lists {for sorts of processes), automata {for
internal representation of compiled systems), partitions {for internal representation of equivalence
classes of states), paths (for sequences of behaviors}, and finally abstraction criteria.
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3.1 Reductions

4bstraction criteria, along with several other notions such as coniexts {Lar 871, are the syntacsical
means for AUTO to characterize process behaviors so as to reduce them further, An abstract
action is a set of sequences of actions, and in AUTO a regular such set. A criterion is & collection
of apecific abstract actions, and in AUTO a finite such set.

Abstract actions lead to staie identifications, and thus Lo smaller guotient systems which may
be analyzed more easily. This reduction only partially retains properties, but this is under full
control of the user. In particular, when the union of all abstract actions does not add up io the full
free monoid of possible concrete actions, then certain (sequences of) bebaviors may go unnoticed.
This amcunts to a fairness assumption: such behaviors would not pertain to the abstract model,
Think of infinite r—lcops in the weak bisimulation case for instance.

Short-hand notations for functions are used when the criterion to be applied is simple and well-
recognized. This is the case of course for weak bisimulation reduciion, where we call a-experiment
any sequence of {more concrete} actions in 7% : @ : v+, ‘T'his criterion is generalized to the case
where only some actions remain visible, while others are renamed to 7.

We can now present & first set of Mmnpctions in AUTO, some based on the abstraction mech-
anisns and some on more classical reduction principles. They all share the property that they
produce normal forms for automata, from terms, each along a given semaxntics. They use congru-
enice properiies wherever possible. Importanily, these functions may be composed. For details of
application, see AUTO’s Handbook [SV 89).

ita
constructs the full globa!l automaton corresponding to a term.

mini
construcis a normal formn automateon w.r.i. strong bisimulation.

obs
coastructs a normal form automaton w.r.i. weak bisimuiation.

tau-sirapd
construcis a normal form automaten w.r.t. elimination of r—loops and single r—iransitions.

trace
constructs a normal form automaton w.r.f. irace language equivalence.

dterm
construcis a normal form antomalon w.ri. delerminisation.

exclusion
constructs a normal formm automaion w3 olimination of transitions whose labels, as com-
pound actions, contain alomic signals declared 2s incompatible in a parameter used by the
function. Thus it trims away branches in the underlying graph.

tan-satiure
saturates an automaton using transitive closure of the transitions 7% 1 2 : rx and 7.

sbetract
abstracts an automaton by a given criterion, given as paramefer. Unlike the previons fune-
tions, this one does not take benefit of congruence properties,

Gther similar functions should progressively add up to this list, endowing the user with a consistent
range of well-identified functions te create his own reduction notions. A mechanism of user-defined
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functions is also envisaged, to give name to most popular reduction schemes. An example of
desirable function is the confext-dependent reduction, where one trims away behaviors of the
process which are not part of the ones allowed by a given context. A context is a set of sequences
of actions and thus amounts to an abstract action.

3.2 Comparisons
Of course resulting antomata may be compared, through any of the two functions:

eq
for checking strong bisimulation, and

obsegq
for checking weak bisimulation.

It was foreseen that the result of these functions should be a temporal logic formula in case of
failure, but other recent efforts in this domain have proved it to be a difficuli maller, especially
due to the size of this synthesised formula. A progressive simulfaneous exploration of the two
terms seems a more promising method, even though it will be less automated.

Here again several further functions could be added, mainly the preorder comparisons, and a
function providing the result of testing a process by a given observer {with may/must options).
3.2 Analysis

None of the preceding functions keeps unnecessary intermediate informations, for {space) efficiency
reasons. For example r—behaviors do not remember which synchronizations produced them. Still,
information is conveyed at two specific points, in the naming of states:

s The name of a state resulting from the expansion of a parallel systemn is the ordered list of
states in components.

¢ The name of a state in a quotient automaton is picked from a representative of this class in
the original automaton.

This information is enough for most cases, for it allows one to retriecve states and paths in
original automata from reduced ones. So observations in our “partial view” systems may be uplifted
to the most concrete automata. Now a further step would be to regain this information on the
process itself. This amounts to retrieve which (sequences of) synchronisations led to r—behaviors,
knowing each time the start and target states, [t is under way.

Corresponding functions are:

structure
provides the external naming of a state in a given automaton. Otherwise names are referred
by integer internal row.

path
provides a path in a given automaton leading from a state to another {or from the initial
state). This function should be completed so as to allow an abstract action to indicate
admissible behaviors for performed {concrete) actions along this path.

Of course the internal natmes of states as required by the structure function above should not be
user-provided, but obtained by the system. To this end there are functions computing (sets of)
states enjoying some properties:

dead
returns the deadlock states of an autamaton

diverge
returns potentially diverging states of an automaton, those with real r—loops {or livelocks).
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refusals
returns all states which may refuse to perform a signal outside a given lisi of signals.

A proper mixture of abstraciion criteris and these functions may allow an analysis leading to a
concrete result, as sitetched in ihe example of section 4. We are not going to expand this type
of functionality in AUTOC, frying to spot every property of interest in the literature. Instead,
collaboration with systems more directly dedicated te the definilion and manipulation of such
properties [Arn 89| seems more fruitful,

In order to realige this, while sticking to the main body of process calculi, we introduced a
function performing the partitioning algorithm for (stroeng) bisimulation reduction from a given
initial partition. It is called refined-mini. I may zlso help the user defining his own semantical
reduction criteria at wilk

Finally, it should be remarked that the original partition may itself be produced by another
vartitioning experiment, possibly with & specific abstraclion formulation or etherwise. More gen-
erally, one may at any moment want to grasp and analyze which states are equivalent wrt. a
given semantics. This is the purpose of the following 4 UTO functions:

strong-partition
returns {an internal representation of) tha cellection of equivalence classes in an automaton
w.r.i, strong bisimulation.

weak-partition
same thing, with weak bisimulation.

crit-partition
same thing, with hisimulation parsmeierized by a given absiraction criterion.

row
provides the row of the class to which & given {concreie} state belongs.

class
provides the list of elernents in a class, given its row,

As we mentioned before, both paths and equivalence classes of states can be displayed with AU-
TOGRAPH on a praphical version of process terms.
3.4 Managing the complexity

There is no miracle to what AUTC may do in this domain. Efficient data structures and al-
gorithms may push the {imit a little further, so that for the time being systems of 10* states
and around 10% irampsitions roay be dealt with in few minutes. For larger systems the prob-
lem: actually comces fram storage limits, more than time bounds. Sc the solutions advocated in
AUTC consist in never building fuli global systems, but instead only reductions of lhem rely-
ing on congruence properties, further enhanced by the pariial eliminalion of urvisible actions,
or by abstraction, Another feature here is the division of usual functionalitics into smaller-grain
functions, allowing finer reduction strategies for the user. For example it was found that the
usual weak reduction algorithm, which corresponds to mini{tan-sature(tau-simpl{process)))
fassuming that process coniains but one level of parailel nesting, so that we leave away congru-
ence considerations), was in meny “symmetrical” problems replaced with bencfit by mini{tau-
sature{mini{tau-sitnpl{processz}})}. This is because the transitive completion of transitions
performed by tau-sature is actually iu practice the most consuming of our algorithms, especially
in space. So any reduction before this phase is welcome.

Still, observing the complexity growth is not easy. AUTO provides through a ccllection of flag
opiions the tracing of varicus measures: time, sizes of subterms at parallel consiruction, maximal
length of T—sequences to name a few.





