
Lecture Notes in 
Computer Science 

Edited by G. Goos and J. Hartmanis 

407 

J. Sifakis (Ed.) 

Automatic Verification 
Methods for 
Finite State Systems 
International Workshop, Grenoble, France 
June 12-14, 1989 
Proceedings 

Springer-Verlag 
Berlin Heidelberg New York London Paris Tokyo Hong Kong 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T



Editorial 

D. Barstow W. 
C. Moler A. Pnueli 

Editor 

Sifakis 
LGI-IMAG, BP 53X 
F-38041 Grenoble Cedex, France 

CR Classification F.3--4 

ISBN 3-540-52148-8 SnlrlnrlPI'"_\fpr'l~n Berlin New York 
ISBN 0-387-52148-8 New York Berlin Heidelberg 

This work is subject to copyright. Ali 
is concerned, specifically the rights 
broadcasting, reproduction on microfilms or in "tn,ar',Ma,,,,,, 

of this publication or parts thereof Îs only permitted unc:ierthe, Dn:)Vi~liorls nt ml'! bemlan 
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always 
paid. Violations faU under the prosecution act of the German Copyright Law. 

© Springer-Verlag Berlin Heidelberg 1990 
Printed in Germany 

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 
2145/3140-543210 - Printed on acid-free paper 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T



PREFACE 

This volume contains the proceedings of the workshop on Automatic Verification Methods for 

Finite State Systems held at Grenoble from 12 to 14 June 1989. The workshop was organised 

on the initiative of Ed Clarke, Amir Pnueli and the Editor. It was sponsored by C-cube, the 

French National Project on Concurrency. Its technical organisation was supported by the IMAG 

Institute. 

This workshop is the first international meeting entirely devoted to the verification of finite state 

systems. Its organisait.on has been motivated by the growing interest in this problem due to the 

conjunction of two independent facts. First, finite state models are very often used to represent 

complex concurrent systems or their abstractions in several application areas such as hardware, 

protocols or systems of real-time control. Second, the emergence over the last decade of 

specification formalisms with weIl established underlying verification theories such as process 

algebras and temporallogics. 

The workshop brought together 120 researchers and practitioners interested in the development 

and the use of methods, tools and theories for automatic verification of finite state systems. The 

goal of the workshop was the comparison of various verification methods for finite state systems, 

and tools to assist the application designer. The emphasis was not only on new research results 

but also on the application of existing results to real verification problems. 

The material included was prepared by the lecturers after the meeting took place. A few lecturers 

failed to provide their manuscript on time and their contribution is not in this volume. The 

proceedings are organised in 5 parts corresponding to sessions of the workshop. Each part 

consists of a collection of long papers followed sometimes by a collection of short papers. 

One may feel that the classification induced by this organisation is arbitrary, as one paper may 

concern several parts; however, l believe that such a presentation helps the reader to appreciate the 

importance and applicability of results for each approach and domain. 

Part 1 is dedicated to verification methods and tools for process algebras and systems of 

communicating processes. Most papers present verification tools for the comparison of transition 

systems modulo some equivalence relation by using model reduction or axiomatic techniques. 

Part 2 is a collection of papers on model checking for both linear and branching time temporal 

logics. 

Part 3 concerns the specification of timed systems. 

Parts 4 and 5 contain papers dealing with the application of verification techniques in two 

domains, respectively, protocol validation and hardware verification. 

October 1989 Joseph Sifakis 
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Process Calculi, from Theory to Practice: Verification Toois 

Gérard Boudol 
Valérie Roy * 

Robert de Simone 
Didier Vergamini t 

l.N.R.l.A. 
Route des Lucioles 
Sophia-Antipolis 

06561 Valbonne CEDEX 
France 

Abstract 

We present here two software tools, AUTO and AUTOGRAPH. Both originated directly from 
the basic theory of process calculi. Both were experim.ented on well-known problems to enhance 
their accordance to users expectations. 

AUTO is a verification tool for pro cess terms with finite automata representation. It com­
putes minimal normal forms along a variety of user parameterized semantics, including sorne 
taking into account partial observation and abstraction. It checks for bisimulation equivalence 
(on the normal forms) , and allows powerful diagnostics methods in case of failure. 

AUTOGRAPH is a graphical, non syntactic system for manipulation of pro cess algebraic 
terms as intuitively appealing drawings. It allows graphical editing by the user, but also visual 
support for display of information recovered from analysis with AUTO. 

1 Introduction 

The theory of process calculi as started with CC S [Mil 80] resulted in a number of verifica­
tion tools designs, mostly in the case of terms with finitary representation (finite automata) 
[CPS 89,BoC 88,GLZ 89]. Part of these attempts was AUTO[Ver 87b,LMV 87a], which originated 
as a (strong- and weak-) bisimulation congruence checker on terms of the MEIJE algebra [Bou 85]. 

Such tools can easily build large transition systems and check two of them for bisimulation, 
on a scale unmanageable by a human operator [Ver 86,Ver 88]. In addition the complexity of the 
growth of these systems can be cut down to sorne extent by using the congruence properties in 
order to reduce subterms first, before setting them in parallel. This is especially true for the weak 
congruence. Specifie algorithms were studied, which are now fairly established. Such algorithms 
proceed along the following line: first devise a normal form of sorne kind by reducing each term 
individually, then perform the so-called partitioning algorithm to equate both terms to be proven 
bisimilar. 

*ENSMP-CMA Sophia-Antipolis 

tCERICS Sophia-Antipolis 
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This was further in 
Quotlen1ts of automata under various semantical criteria showed to be a promising way of analysis. 
sy:nt,~ct,lC~H formalism for defining those reductions was then in order. We shaH present here the 

state of the art in AUTO in this domain. 
Along with the original definition of the MEIJE in [Bou came the notion of abstract 

actions and abstraction criteria, which are a mechanism for defining levels of atomicity 
with different granularity, and actuaHy move away from low-level detaHs of basic concrete actions. 
It is a quite natural generalization of the ideas behind weak hisimulation, giving the user the 
possibility to decide himself on what is to be relevant "experiment"performed on the 
system. Similar ideas may he found in 85,Par Although we shaH further elaborate on 
this later on, we can just say here that an abstract action is a set (usuaHy regular) of concrete 
action sequences, to be thought of as "having the same meaning" , as long as this sort of experiment 
is considered on the system. 

One point of success is that in general transition systems are reduced drastically 
in size. They can be considered as charaderistic· of a vision of the system. This is to be 
contrasted with a temporallogic where statements are already imposed befme checking, 
80 that one does not much out of an answer "no". When defining relevant abstract actions, the 
user usuaUy provides (sets of) sequences with particular meaning which should· appear, as weIl as 
others which should Dot. The presence of undesired actions in the quotient abstracted automaton 
indicates at once in which conditions may take place, which is unvaluable information while 
"debugging" a system. Experimenta were conducted in [Lec 89]. 

Use of AUTO showed that ofprocess terms was error-prone, due to misspelling 
of names and other mistakes that could obscure the communication abilities. 
This was the priee to pay for terms in such a low-Ievel formalism,Then a rep-
resentation of terrus was wanted both as more flexible and more immediate than a textual one, 
Communications could be traced with Unes ports, instead of using the notations 
of renaming and restriction operators, which induced most mistakes. ParaBel operators could also 
be easily generalized to more than two processes for instance. Representation foBowed the Hnes of 

79J. 
The graphical system was named A UTOGRAPH It was not fully integrated with A DTO 

so that both can be used to a extent independently. In particular, AUTOGRAPH's output 
may easily be turned to any process calculus manipulation system. 

In fact the future of AUTOGRAPHresides not 50 much in graphitaI edition, as languages tend 
to far more complex than simple process algebras, but rather in graphical support of programs 
skeletons, indu ding only their process structures, on which to visualize results of manipulation 
<>fi'''I ... ·.,'''' from verification systems. This is nowadays our main direction of effort. 

:2 A short ,rlp,u·l·int.ln.n of AUTOGRAPH 

AUTOGRAPH is a system, fully endowed with multi-window facilities. Functions are 
th]~ough a mouse but ton after selection of a menu in a, menu bar. We shaH not detaH 

but rather focus on the nature of edited as well 
fundions dedicated to· visua,lizations of interesting results. of typical 

AUTOGRAPHie are pictured in the Let us just mention here that pictures may be 
printed on paper (and in reports!). AUTOGRAPH then a translation 
which makes look much nicer than on the screen types more 
distinctIy too). 

AUTOGRAPH knQws two main types of editable objects: 

Networks 
They represent terms and " ....... "_LAJU."'. and are drawn as rectangular boxes. They usually 
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3 

bear ports on their border, which are tied together with straight or broken lines to indicate 
communications. A communication is caIled internaI if it does not pervade to the father box. 
Communications need not be named so that aIl matters of renarnings and restrictions are 
left to the system. The only pertinent names that are required upon signaIs communications 
are the port names of innermost boxes, as weIl as communication names (eventuaIly on the 
drawn lines) at the outermost level. These may not be guessed of course. 

A box may contain a name in order for its content to be drawn in sorne other window 
(windows have titles giving names to their full content). Subterms may be shared, so that 
several boxes in the same window may bear the same name. 

A box may also contain one automaton (at most) , in which case the display ofthis automaton 
may not exceed the box boundaries. 

In A UTOGRAPH one may retrieve information produced from AUTO: for example in an 
AUTOGRAPH Net one may highlight the set of states (distributed among aIl components) 
corresponding to a given state of a global system produced by AUTO. Then using this primary 
feature we could display either equivalence classes of such states, browsing back and forth 
through its scattered states; or behavior paths, by depicting the distributed state jumps, 
as weIl as the performed actions and synchronisations at ports at any level up the graphic 
pro cess tree. This work is still un der progress, but does not seem to make any problem. 

Automata 
They are represented by round-shaped vertices, which are joined by broken Hne edges. Both 
edges and vertices may be narned, aithough it is mandatory for edges only. 

An edge may actually be named several times, thereby representing several transitions at 
once. Identically named vertices refer to the sarne state, but at most one of them may 
have outgoing edges (it is then the state behavior "declaration", while the others are intro­
duced to avoid loops in drawings). In fact there exist several such short-hand conventions in 
A UTOGRAPH allowing to simplify drawings. We shall not enter into details here. 

Automata may be contained in boxes; alternatively there can be one residing directly inside 
the window. 

Automata representing system components shouid be entered by the user, as the model of his 
problem. But one may also depict an automaton as resulting from analysis under AUTO. We 
calI this "exploration". The automaton is not automatically positioned: instead, the initial 
state is given, and then one-step transitions of any explored state are progressively provided 
on demand. The reason for this choice was that automatic placement is often disappointing, 
while progressive unfolding of the states and transitions may lead to interesting considerations 
(much like simulations of systems). 

3 A short description of AUTO 

AUTO is a system consisting of a main toplevelloop, in which one may type commands. Commands 
may be of various sorts (including input / output to and from files). But most of them bind identifiers 
to results of functions applied to objects. Functions may be composed from a list of primary 
functions, which constitute the heart of AUTO. Other usuai commands are those binding identifiers 
to syntactic objects. In this case one has to invoke the corresponding parser explicitly (e.g. parse 
x = a: stop is a command parsing a simple MEIJE term). In the former case one simply types 
set y = function( ... ). 

AUTO knows 6 main types: (process) terms, signaIs lists (for sorts of processes), automata (for 
internaI representation of compiled systems), partitions (for internaI representation of equivalence 
classes of states), patlis (for sequences of behaviors), and finally abstraction criteria. 
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3.1 Reductions 

Abstraction criteria, with several oUler snch as contexts syntactical 
means for AUTO to characterize pl'ocess behaviors so as to l'cduce them further. An abstract 
action is a set of sequences actions, and in AUTO a regular such set. A eriterion is collection 
of specifie abstract actions, and in AUTO a finite such set. 

Abstract actions lead to state systems which may 
be more This reduction only retains properties, but this is under full 
control of the user. In particular, when union of aH abstrad actions do es not add up to the full 
free monoidof concrete actions, then certain of) behaviors may go unnoticed. 
This amounts to a faÎrness assumption: such behaviors would not pertain to the abstract model. 
Think of infinite in the weak bisimulation case for instance. 

Short-hand notations for functions are used when the criterion to be applied is and well-
recognized. This is the case of course for weak bisimulation reduction, where wc call a-experiment 

any sequence of concrete) actions· in T* : a : r*. This criterion is generalized to the case 
where only some actions remain visible, while others are renamed to r. 

We can now present a first set of functions in AUTO, sorne based on the abstradion mech-
anisms and sorne on more dassical reduction They aH share the property that they 
nroclnc:p. normal forms for automata, from terms, each a given semantics. They use congru-
ence wherever possible. these functions may be For details of 
application, see AUTO's Handbook [SV 89]. 

tta 
constructs the fuH automaton co:rn:~sp'OIlldlng to a term. 

mini 
constructs a normal form automaton w.r. t. strong bisimulation. 

obs 
constructs normal form automaton W.r. t. weak bisimulation. 

constructs a normal form automaton w.,r.t. elimination of r-loops and single r-transitions. 

trace 
constructs a normal form automaton w.I'.t. trace u.UL6""'E;V vuu •• ~." .. ,,, ..... ,,. 

dterm 
constructs 

exclusion 

form automaton w.r.t. determinisation. 

constructs a normal form automaton w.r.t. elimination of transitions whose as com­
pound actions, contain atomic dedared as in a parameter used the 
function. Thus it trims away branches in the underlying 

tau-sature 
saturates an automaton transitive closure of the transitions 1"* : a : r* and r*. 

abstract 
abstrads automaton as parameter. Unlike previous func-
tions, this one does not take benefit of congruence properties. 

Other similar functions should nr.'\O'T,.,"""'v,,,,h, add up to this 
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5 

functions is also envisaged, to give name to most popular reduction schemes. An example of 
desirable function is the context-dependent reduction, where one trims away behaviors of the 
process which are not part of the ones allowed by a given context. A context is a set of sequences 
of actions and thus amounts to an abstract action. 

3.2 Comparisons 

Of course resulting automata may be compared, through any of the two functions: 

eq 
for checking strong bisimulation, and 

obseq 
for checking weak bisimulation. 

It was foreseen that the result of these functions should be a temporal logic formula in case of 
failure, but other recent efforts in this domain have proved it to be a difficult matter, especially 
due to the size of this synthesised formula. A progressive simultaneous exploration of the two 
terms seems a more promising method, even though it will be less automated. 

Here again several further functions could be added, mainly the preorder comparisons, and a 
function providing the result of testing a process by a given observer (with may/must options). 

3.3 Analysis 

None of the preceding functions keeps unnecessary intermediate informations, for (space) efficiency 
reasons. For example r-behaviors do not remember which synchronizations produced them. Still, 
information is conveyed at two specific points, in the naming of states: 

• The name of astate resulting from the expansion of a parallel system is the ordered list of 
states in components . 

• The name of a state in a quotient automaton is picked from a representative of this class in 
the original automaton. 

This information is enough for most cases, for it allows one to retrieve states and paths in 
original automata from reduced ones. So observations in our "partial view" systems may be uplifted 
to the most concrete automata. Nowa further step would be to regain this information on the 
process itself. This amounts to retrieve which (sequences of) synchronisations led to r-behaviors, 
knowing each time the start and target states. It is under way. 

Corresponding functions are: 

structure 

path 

provides the external naming of a state in a given automaton. Otherwise names are referred 
by integer internaI row. 

provides a path in a given automaton leading from astate to another (or from the initial 
state). This function should be completed so as to allow an abstract action to indicate 
admissible behaviors for performed (concrete) actions along this path. 

Of course the internaI names of states as required by the structure function above should not be 
user-provided, but obtained by the system. To this end there are functions computing (sets of) 
states enjoying sorne properties: 

dead 
returns the deadlock states of an automaton 

diverge 
returns potentially diverging states of an automaton, those with real r-Ioops (or livelocks). 
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6 

refusaIs 
returns states which may to pe:rtorm a outside a given list signaIs. 

proper mixture abstraction these funetions may allow an ,u,:;. •. ,v",,,, 

concrete result, as sketched in the of section 4. We are not going to this type 
of functionality in AUTO, trying to spot every property of interest in the literature. Instead, 
collaboration with systems more dedicated to the definition and of such 
properties [Am 891 seems more fruitful. 

In order to realize this, while "'1-t,,.Ir ......... to the main body of process calculi, we introduced a 
function performing the partitioning for bisimulation reduction from a given 
initial partition. It is called refined-mini. It may also help the user defininghis own semantical 
reduetion criteria at will. 

Finally, it should be remarked that original partition may itself be produeed by another 
partitioning with abstraction formulation or otherwise. More gen-

one may at any moment want to grasp and which states are equivalent w.r.t. a 
given semantics. This is the purpose of the AUTO funetions: 

returns (an internaI relncserltation 
w,r. t. strong bisimulation. 

with weak bisimulation. 

the collection of e(rm"\i'au~n(·.e classes in an auto maton 

crit-partition 
same with bisimulation paraIneter'lzl!'~d given abstraction criterion. 

row 
row of the cIass to which 

dass 
n.,.., ..... ~Jlru·'" the list of elements in gîven its row. 

As we mentioned before, both and Ul,,'a.H~H~,C classes of states cau be Ullj'!JH:!,Yt;~U with Au-
TOGRAPH on a graphical version of process terms. 

3.4 Managing the complexity 

There i.s no miracle to what AUTO may do in this domain. Efficient data structures and al­
gorithms may push the limit a litt le further, 80 that for the Ume being systems of 104 states 
and around 105 transitions may be dealt with in few minutes. For larger systems the prob­
lem actually cornes from storage limita, more th an time bounds. Sc the solutions advocated in 
AUTO consist in never building full global systems, but instead only reductions of them rely­
ing on congruence properties, further enhanced by the partial elimination of unvisible actions, 
or by abstraction. Another feature here is the division of usuai functionalities into smaHer-grain 
functions, allowing finer reduction strategies for the user. For example it was found that the 
usuaI weak redudion algorithm, which corresponds to mini(tau-sature(tau-simpl(process») 
(assuming that process contains but one level of paraUd 80 that we leave away eongru­

probIems replaced with benefit by mini(tau­
This is because the transitive completion of transitions 

performed by tau-sature is actuaHy in practice the most consuming of ouralgorithrns, especially 
in space. 80 any reduction before thisphase is welcome. 

Still, observing the complexity is not easy. AUTO provides through a collection of f1.ag 
options the tracing of various measures: time,sizes of subterms at parallel construction, maximal 
length of r-sequences to name a few. 
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