
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

348

P. Deransart B. Lorho
J. Mafuszynski (Eds.)

Programming
Languages Implementation
and Logic Programming
International Workshop PLiLP '88
Orléans, France, May 16-18, 1988
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Editorial Board

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Editors

Pierre Deransart
INRIA-Rocquencourt, Domaine de Voluceau
B.P. 105, F-78153 Le Chesnay Cedex, France

Bernard Lorho
Université d'Orléans, Faculté des Sciences
Laboratoire d'Informatique Fondamentale (LlFO)
B.P. 6759, F-45067 Orléans Cedex 2, France

Jan Maluszynski
Department of Computer and Information Science
Linkôping University
S-58183 Linkôping, Sweden

CR Subject Classification (1987): F.4.1-2, D.3.1, D.3.4, F.3.3, 1.2.3

ISBN 3-540-50820-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-50820-1 Springer-Verlag New York Berlin Heidelberg

This work is subject 10 copyright. Ali righls are reserved, whether the whole or part of the malerial
IS concerned, specifically the righls of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in ils version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution aet of the German Copyright Law

© Springer-Verlag Berlin Heidelberg 1989
Printed in Germany

Pnnting and binding: Oruckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

PREFACE

PLILP '88, the frrst international Workshop on Programming Languages Implementation and
Logic Programming, was held from May 16 to May 18, 1988 in Orléans. PLILP '88 has been
organized by the Laboratoire d'Informatique Fondamentale d'Orléans (LIFO-Université
d'Orléans) and Institut National d'Informatique et d'Automatique (INRIA-Rocquencourt).

The aim of the workshop was to discuss whether research on the implementation of
programming languages and research on logic programming can mutually benefit from each
other's resultsThe intention was to bring together researchers from both fields, especially those
working in the area of their intersection.

Problems such as formaI specification of compilers and syntax-based editors, program analysis
and program optimization have been traditionally studied by implementors of algorithmic
languages and have resulted in a number of well-established notions, formalisms and
techniques. At the same time, an increasing number of people use logic programming as a way
of specifying compilers or other programming environment tools, taking advantage of the
relatively high level of logic programming and the growing efficiency of Prolog
irnplementations.

On the other hand, research on logic programming raises the questions of analysis of logic
programs and their optimization. These are motivated primarily by compiler construction for
logic programs, by studies on the methodology of logic programming and by the attempts to
amalgarnate logic programming and functional programming.

Research in the field of logic programming, including its applications to the implementation of
other programming languages, may or may not refer to the well-known results of the other
field. In the frrst case the field of logic programming may benefit from these results. For
example application of LR parsing techniques rnay contribute to a more efficient implementation
of definite clause grammars. On the other hand, techniques of logic programming may
contribute to the development of the other field. As an example, one may consider the use of
logic programs for compiler specification.

The purpose of the workshop was to review the techniques developed in one (or both) of the
fields which could also be of sorne help in the other one and to facilitate the transfer of
expertise. It seems important to compare notions used in both fields: pointing out similarities
between them rnay prevent rediscovering results already known, while studying the differences
rnay contribute to the transfer of technology.

The workshop consisted of a series of invited talks and a panel discussion. This book presents
sorne of the most significant talks.

We gratefully acknowledge the financial support provided by the following institutions:
- INRIA,
- Université d'Orléans,
- GRECO de Programmation et Outils pour l'Intelligence Artificielle du CNRS.

Le Chesnay, Orléans, Linkoping
December 1988

Pierre Deransart
Bernard Lorho

Jan Maluszynski

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Functional Programming and Logic Programming

Static Analysis of Functional Programs with Logical Variables
Gary Lindstrom

Towards a Clean Amalgamation of Logic Programs with Extemal Procedures
Staffan Bonnier and Jan Maluszynski .. 20

Abstract Interpretation in Logic Programming

An Application of Abstract Interpretation in Source Level Program Transformation
Daniel De Schreye and Maurice Bruynooghe 35

A Tooi to Check the Non-Floundering Logic Programs and Goals
Roberto Barbuti and Maurizio Martelli ... 58

Towards a Framework for the Abstract Interpretation of Logic Programs
Ulf Nilsson 68

Logic Programming in Compiler Writing

An Implementation of Retargetable Code Generators in Prolog
Annie Despland, Monique Mazaud and Raymond Rakotozafy................................... 83

Towards a "Middle Road" Methodology for Writing Code Generators
Feliks Kluzniak and Miroslawa Milkowska 105

A Compiler Written in Prolog : the Véda Experience
Jean-François Monin 119

Grammars

Couplee! Context-Free Grarnrnar as a Programming Paradigm
Yoshiyuki Yamashita and Ikuo Nakata 132

A Bottom-Up Adaptation of Earley's Parsing Aigorithm
Frédéric Voisin 146

Using an Attribute Grammar as a Logic Program
Günter Riedewald and Uwe Liimmel 161

AUribute Grammars and Logic Programming

Structure Sharing in Attribute Grammars
Henning Christiansen 180

A Semantic Evaluator Generating System in Prolog
Pedro Rangel Henriques 201

A Grammatical View of Logic Programming
Pierre Deransart and Jan Maluszynski 219

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Attribute Grammars in Logic Programming

Compiling Typol with Attribute Grammars
Isabelle Attali 252

Formai Specification of a Prolog Compiler
Michael Hanus 273

Logic Programming for Programming Environments

Formai Specification of Interactive Languages U sing Defmite Clause Grammars
Weidong Dang 283

Using Logic Databases in Software Development Environments
Patrizia Asirelli and Paola Inverardi. 292

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Static Analysis Of
Functional Programs With Logical Variables*

Abstract

Gary Lindstrom
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112 USA

It has recently been discovered by several researchers that logical variables, even under unconditional
unification, can significantly increase the expressive power of functional programming languages.
Capabilities added under this extension include (i) support for use before binding of variables, e.g.
in constructing functionally attributed parse trees; (ii) computation by constraint intersection, e.g.
polymorphie type checking; (iii) "micro object" support for object oriented programllling, e.g. for
direct message delivery, and (iv) monotonie refinement of complex data structures, e.g. function
evaluation by graph reduction.

In contrast to the fundamental producer-consumer orientation of pure functional programming,
there is no single "producer" of the value of a logical variable. Ali efficient implementations of pure
functional programming rely on direct access to value sources, and exploit the resulting uni-directional
information flow (e.g. by dataflow, demand propagation, or normal order graph reduction). One
may therefore ask whether these implementation techniques can be augmented to accommodate the
"isotropic" information flow associated with logical variables. In a previous paper we showed that the
answer is largely affirmative for fine grain (5, K, 1) combinator reduction implementations. We now
outline an approach tbat adapts this technique to larger granularity combinators through a static
analysis technique that estimates both operator strictness (graph partitioning into co-evaluation
equivalence classes) and mode effects on logical variables (e.g. "read-only" occurrences). Many
advantages are achieved, but the impossibility of comprehensive flow analysis means that the resulting
large grain combinators cannot comprise exclusively sequential code.

-This research was supported in part by grant CCR-8704778 from the National Science Foundation, and by an
unrestricted giCt ta the University of Utah from Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

