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PREFACE 

PLILP '88, the frrst international Workshop on Programming Languages Implementation and 
Logic Programming, was held from May 16 to May 18, 1988 in Orléans. PLILP '88 has been 
organized by the Laboratoire d'Informatique Fondamentale d'Orléans (LIFO-Université 
d'Orléans) and Institut National d'Informatique et d'Automatique (INRIA-Rocquencourt). 

The aim of the workshop was to discuss whether research on the implementation of 
programming languages and research on logic programming can mutually benefit from each 
other's resultsThe intention was to bring together researchers from both fields, especially those 
working in the area of their intersection. 

Problems such as formaI specification of compilers and syntax-based editors, program analysis 
and program optimization have been traditionally studied by implementors of algorithmic 
languages and have resulted in a number of well-established notions, formalisms and 
techniques. At the same time, an increasing number of people use logic programming as a way 
of specifying compilers or other programming environment tools, taking advantage of the 
relatively high level of logic programming and the growing efficiency of Prolog 
irnplementations. 

On the other hand, research on logic programming raises the questions of analysis of logic 
programs and their optimization. These are motivated primarily by compiler construction for 
logic programs, by studies on the methodology of logic programming and by the attempts to 
amalgarnate logic programming and functional programming. 

Research in the field of logic programming, including its applications to the implementation of 
other programming languages, may or may not refer to the well-known results of the other 
field. In the frrst case the field of logic programming may benefit from these results. For 
example application of LR parsing techniques rnay contribute to a more efficient implementation 
of definite clause grammars. On the other hand, techniques of logic programming may 
contribute to the development of the other field. As an example, one may consider the use of 
logic programs for compiler specification. 

The purpose of the workshop was to review the techniques developed in one (or both) of the 
fields which could also be of sorne help in the other one and to facilitate the transfer of 
expertise. It seems important to compare notions used in both fields: pointing out similarities 
between them rnay prevent rediscovering results already known, while studying the differences 
rnay contribute to the transfer of technology. 

The workshop consisted of a series of invited talks and a panel discussion. This book presents 
sorne of the most significant talks. 

We gratefully acknowledge the financial support provided by the following institutions: 
- INRIA, 
- Université d'Orléans, 
- GRECO de Programmation et Outils pour l'Intelligence Artificielle du CNRS. 

Le Chesnay, Orléans, Linkoping 
December 1988 

Pierre Deransart 
Bernard Lorho 

Jan Maluszynski 
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Static Analysis Of 
Functional Programs With Logical Variables* 

Abstract 

Gary Lindstrom 
Department of Computer Science 

University of Utah 
Salt Lake City, Utah 84112 USA 

It has recently been discovered by several researchers that logical variables, even under unconditional 
unification, can significantly increase the expressive power of functional programming languages. 
Capabilities added under this extension include (i) support for use before binding of variables, e.g. 
in constructing functionally attributed parse trees; (ii) computation by constraint intersection, e.g. 
polymorphie type checking; (iii) "micro object" support for object oriented programllling, e.g. for 
direct message delivery, and (iv) monotonie refinement of complex data structures, e.g. function 
evaluation by graph reduction. 

In contrast to the fundamental producer-consumer orientation of pure functional programming, 
there is no single "producer" of the value of a logical variable. Ali efficient implementations of pure 
functional programming rely on direct access to value sources, and exploit the resulting uni-directional 
information flow (e.g. by dataflow, demand propagation, or normal order graph reduction). One 
may therefore ask whether these implementation techniques can be augmented to accommodate the 
"isotropic" information flow associated with logical variables. In a previous paper we showed that the 
answer is largely affirmative for fine grain (5, K, 1) combinator reduction implementations. We now 
outline an approach tbat adapts this technique to larger granularity combinators through a static 
analysis technique that estimates both operator strictness (graph partitioning into co-evaluation 
equivalence classes) and mode effects on logical variables (e.g. "read-only" occurrences). Many 
advantages are achieved, but the impossibility of comprehensive flow analysis means that the resulting 
large grain combinators cannot comprise exclusively sequential code. 

-This research was supported in part by grant CCR-8704778 from the National Science Foundation, and by an 
unrestricted giCt ta the University of Utah from Telefonaktiebolaget LM Ericsson, Stockholm, Sweden. 
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