¢ , _,- “ - ..‘:I ’

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

c'Z) 348

LLl

O P. Deransart B. Lorho

8 J. Matuszynsk! (Eds.)

LLl

D)

O

LL

1T .

= Programming

= Languages Implementation
m

0 and Logic Programming

International Workshop PLILP '88
Orléans, France, May 16—18, 1988
Proceedings

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo

BIBLIOTHEQUE DU CERIST

Editorial Board
D. Barstow W. Brauer P Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmiiller }. Stoer N. Wirth

Editors

Pierre Deransart
INRIA-Rocquencourt, Domaine de Volugeau
B.P. 105, F-78153 Le Chesnay Cedex, France

Bernard Lorho

Université d'Orléans, Faculté des Sciences
Laboratoire d'Informatique Fondamentale (LIFO)
B.P. 6758, F-45087 Oriéans Cedex 2, France

lan Maluszynski

Department of Computer and Information Science
Linkaping University

5-58183 Linkoping, Sweden

27,

CR Subject Classification (1987} F4.1-2,D.3.1,0.34,F3.3,1.2.3

ISBN 3-540-50820-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-50820-1 SpringerVerlag New York Berlin Heidelberg

This work is subject to copyrignt. Al nghis are reserved, whether the winale or part of the material
is concerned, specifically the nghts of transkdion, reprinling, re-use of illustrations, recitation,
broadcasting, reproduction on microfims or 1n other ways, and storage in data banks. Duphcation
of this publication or parts thereof is only permitted under the provisions of the German Copyngit
Law of September 9, 1985, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under 1he prosecution act of the German Copyright Law.

% Springer-Verlag Berlin Heidelberg 1983
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergslr.
2145/3140-543210 — Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

PREFACE

PLILP 88, the first international Workshop on Programming Languages Implementation and
Logic Programming, was held from May 16 to May 18, 1988 in Orléans. PLILP '88 has been
organized by the Laboratoire d'Informatigue Fondamentale d'Orléans (LIFO-Université
d'Orléans) and Institut National dInformatique et d'Automatique (INRIA-Rocquencourt),

The aim of the workshop was 10 discuss whether research on the implernentation of
programming languages and research on logic programming can mutually benefit from each
other's resultsThe intention was to bring together rescarchers from both fields, especially thase
working in the area of their intersection,

Problems such as formal specification of compilers and syntax-based editors, program analysis
and program opiimizaton have been traditionally studied by implementors of algorithmic
languages and have resulted in a number of well-established nottons, formalisms and
techniques. At the same time, an increasing number of people use logic programming as a way
of specifying compilers or other programming environment tools, taking advantage of the
relatively high level of logic programming and the growing efficiency of Prolog
implementations.

On the other hand, research on logic programming raises the questions of analysis of logic
programs and their optimization. These are motivated primarily by compiler construction for
logic programs, by studies on the methodology of logic programming and by the atiempts 1o
amalgamate logic programming and functional programming.

Research in the field of logic programming, including its applications to the implementation of
other programming languages, may or may not refer 1o the well-known results of the other
field. In the first case the field of l[ogic programming may benefit from these results. For
example application of LR parsing techniques may contrtbute to a more efficient implementation
of definite clause grammars. On the other hand, techniques of logic programming may
contribute to the development of the other field. As an example, one may consider the use of
logic programs for compiler specification.

The purpose of the workshop was to review the techniques developed in one (or both) of the
fields which c¢ould also be of some help in the other one and to facilitate the transfer of
expertise. It seems important to compare notions used in both figlds : pointing out similarities
between thern may prevent rediscovering results already known, while studying the differences
may contribute to the transfer of technology.

The workshop consisted of a series of invited talks and a panel discussion. This book presents
some of the most significant talks.

We gratefully acknowledge the financial support provided by the following institutions ;
- INRIA,

- Université d'Orléans,

- GRECQ de Programmation et Qutils pour I'Intelligence Artificielle du CNRS.

Le Chesnay, Orié¢ans, Linképing Pierre Deransart
December 1988 Berard Lorhe
Jan Matuszynski

BIBLIOTHEQUE DU CERIST

Table of Contents

Functional Programming and Logic Programming

Static Analysis of Functional Programs with Logical Variables

Gary LindSIFOm. ..o it virerie e s s esa e e s s st s e e e aa e aas

Towards a Clean Amalgamation of Logic Programs with External Procedures

Staffan Bonnier and Jan Maluszynski...........ooociviiiieiiiiiiiinrnns e enscnnasnns

Abstract Interpretation in Logic Programming

An Application of Abstract Interpretation in Source Level Program Transformation

Daniel De Schreve and Maurice BruyRoogRE......viviiiviivviiiciniciesnsasrerneses cneases

A Tool to Check the Non-Floundering Logic Programs and Goals

Roberto Barbuti and Maurizio Martelli..........o.coiiviireiioveemieeieeiiicirevsssienssinns

Towards a Framework for the Abstract Interpretation of Logic Programs

L F Y T T T PO

Logic Programming in Compiler Writing

An Implementation of Retargetable Code Generators in Prolog

Annie Despland, Monigue Muazaud and Raymond Rakotozafy.........ccccvviveieecannnens

Towards 2 “Middle Road” Methodology for Writing Code Generators

Feliks Kluzniak and Miroslawa Milkowska.........ccooiioiiiiiiiiriiinininsssn s

A Compiler Written in Prolog the Véda Expenence
Jean-Frangois Monin.. e

Grammars

Coupled Contexi-Free Grammar as a Programming Paradigm

Yoshiyuki Yamashita and Tkuo Nakat@..........ccooooviniiiiiiiiiniiiinnen s

A Bottom-Up Adaptation of Earley's Parsing Algorithm

s N L Y L T T

Using an Attribute Grammar as a Logic Program

Gilinter Riedewald and Uwe Ldmmel.........ooiiiiiiiiicii s ties it

Attribute Grammars and Logic Programming

Smucture Sharing in Attribute Grammars
Henning Christiansen... rrreerieraee e

A Semantic Evaluator Gencraﬂng Systcm in Prolog
Pedro Range! Henriques...

A Grammatical View of Logic Programming

Pierre Deransart and Jan Maluszynski..........cccooiiiriiinieinasieseeaceia e aeaaeeaesr o

BIBLIOTHEQUE DU CERIST

Wi

Attribute Grammars in Logic Programming

Compiling Typol with Attribute Grammars

ISAbelle ABIALL. .. e ettt vt e st e st ranasanreranans

Formal Specification of a Prolog Compiler

Michael HaRUS . ..o et et e s e e e e re i anaaanaaanen

Logic Programming for Programming Environments

Formal Specification of Interactive Languages Using Definite Clause Grammars

Weidong DaRB. ..ot a s et a e

Using Logic Databases in Software Development Environments
FPatrizia Asirelli and Paola Inverardi..............................

BIBLIOTHEQUE DU CERIST

Static Analysis Of
Functional Programs With Logical Variables*

Gary Lindstrom
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112 USA

Abstract

It has recently been discavered by several researchers that logical variables, even under unconditional
unification, can significantly increase the expressive power of functional programming languages.
Capabilities added under this extension include (i) support for use before binding of variables, e.g.
in constructing functionally attributed parse trees; (ii) computation by constraint intersection, e.g.
pelymorphic type checking; (iii) “micro object” support for object oriented prograrmning, e.g. for
direct mcssage delivery, and (iv) monotonic refinement of complex data structures, e.g. function
evaluation by graph reduction.

In contrast to the fundamental producer-consumer orientation of pure functional programming,
there is no single “producer” of the value of a logical variable. All efficient implementations of pure
functional programming rely on direct access to value sources, and exploit the resulting uni-directional
information flow {e.g. by dataflow, demand propagation, or normal order graph reduction). One
may therefore ask whether these implementation techniques can be augmented to accomimnodate the
“isotropic” information flow associated with logical variables. In a previous paper we showed that the
answer is largely affirmative for fine grain (S, K, I) combinator reduction implemeniations. We now
outline an approach that adapts this technique to larger granularity combinators through a static
analysis technique that estimates both operator strictness {(graph partitioning into co-evaluation
equivalence classes) and mode effects on logical variables (e.g. "read-only™ occurrences). Many
advantages are achieved, but the impossibility of comprehensive flow analysis means that the resulting
large grain combinators cannot comprise exclusively sequential code.

*This tesearch was supported in pact by grant CCR-8704778 from the National Science Foundation, and by an
unrestricted gift to the University of Utah from Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.

