BIBLIOTHEQUE DU CERIST

Frances Newbery Paulisch ce 01104

The Design of an
Extendible Graph Editor

Springer-Verlag
Berlin Heidelbers New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Sciics BEditors

Jethard Goos Juris Hartmanis

Universitit Kartsruhe Comell Unjversity

Postfach 6980 Department of Computer Science
Vincenz-Priessnitz-Strafie 1 4130 Upson Hal

D-76131 Karisruhe, Germany Tthaca, NY 14853, USA

Author

Frances Newbery Paulisch

Siemens AG, ZFE BT SE 32

Otto-Hahn-Ring 6, D-§1739 Miinchen, Genmany
E-mail: paulisch@ztivax.zfe.stemens.de

5992

CR Subject Classification (1921); .22, L34, D.1.5, G.2.2, H2.3, D.2m

ISBN 3-540-57090-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57090-X Springer-Verlag Naw York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of transiation, reprinting, re-use
of Hlustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the Germian Copyright Law of September 9,
1965, in its current version, and permission Jfor use must always be obtaincd from
Springer-Verlag. Vielations are liable for prosecution under the German Cogyright
Yaw.

© Springer-Verlag Berlin Heidelberg 1993
Prinied in Germany -

Typesetiing: Camera ready by suthor
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

Craphs can be used to convey information about relationships in many appli-
catlons. State transition diagrams, PERT/CPM charts, call graphs, and entity-
relationship diagrams are a few examples of many applications involving graphs.
Typically, nodes 1n the graph represent items in the application (e.g. a state,
an activity, a program module) and the edges represent the relationships among
these items (c.g. state tramsition, activily duration, procedure invocation). A
graph editor is an interactive tool that presents a graph to the user pictorially
and allows the user to edit the graph. The recent proliferation of graph edi-
tors for particular applications indicate their effectiveness as the graphical user
interface to an application. Many designers, however, are hesitant to use the
graph editor model because of the high cost of developing such a graphical user
interface.

This book presents the design of an extendible graph editor, which is a graph
editor that can be adapted easily to many different application areas. The advan-
tages of using a graph editor will thus be available for a minrimal customization
effort. Several fundamental and recurring problern areas associated with graph
editors are investigated and a solution is proposed for each. The specific topics
investigated are:

¢ Graph layout: How can application-specific layout requirements, individ-
ual preferences, and layout stability be integrated with layout algorithms?
A layout constraint mechanism is presented which can easily be combined
with various graph layout algorithms.

e Graphical abstraction: How can users deal with large graphs containing
hundreds of nodes and thousands of edge crossings? A novel clustering
techntque called edge conceniration is presented which can reduce the ap-
parent complexity of the graph. Alternatively, a subgraph can be specified
and viewed as a mulli-level graphical abstraction either in the context of
the graph or in a separate view.

e Persistence: How can the graph structures produced by the editor be kept
in long-term storage, especially if the node and edge data structures have
been extended for a particular application? The proposed solution uses a
standardized, external format for graphs. A program generator tool reads
the graph, node, and edge class declarations and automatically generates
routines for reading, writing, and editing these data structures.

o Extendibility: How should the editor kernel be structured to be adaptable
to various applications? The object-oriented design of the proposed graph
editor makes it easy to adapt.

To demonstrate their feasibility, the proposed solutions have been incor-
porated into EDGE, an extendible graph editor prototype. EDGE has been

BIBLIOTHEQUE DU CERIST

vl

adapted o a number of applications including: a browser for entity-relationship
diagrams, a taol for visualizing software configurations, a PERT chert editor, a
call graph animator, a directory editor, and a logic sirnulator.

This document 1s a revigsed version of my doctoral dissertaiion from the
Faculty of Informatics at the University of Karisruhe {FR(G) presented on May
7, 1691, I thank my advisor, Prof. Dr. Walter ¥. Tichy, for hie invaluable
guidance over ihe past years as well as my dissertation’s co-referee, Prof. Dr.
A, Schmilt,

1 pariicularly thank Karl-Friedrich Bohringer, Stefan Manke, and Stefan
Strugies for their valuable contributions to EDGE. Special thanks go to Bala
Krishnamurthy, without whose encouragement I might never have made it this
far. The support of my family was an imporiant factor in completing this work.

Finally, I would like to thapk the EDGE users at companies, research insti-
tutions, and universities in the United States and Furcpe. Their strong interest
lends credence to my claim that an extendible graph editor is an appropriate
graphical user interface to a wide range of applications.

Frances Newbery Paulisch
June 1993

BIBLIOTHEQUE DU CERIST

Contents

1 Introduction e
1.1 Motivationand Goals
1.2 Research Contributions
1.3 Organization Lo
2 Definitionof Terms
2.1 Graphs L
2.2 Graph Editors oo
3 Related Work: Graph Editors
3.1 Special-Purpose Graph Editors
3.2 General-Purpose Graph Editors
3.3 Extendible Graph Editors
34 SUIMMATY o s e e e e e e e
4 Layout Algorithms and Layout Constraints,
4.1 Related Work
411 Planar Graphs L L.
412 Undirected Graphs
413 Trees e
414 Directed Graphs L.
42 Layout Constraints_ ..
42.1 Low-Level Constraints _.......
4.2.2 Constraint Manager
4.2.3 Three-Dimensional Constraints _ .
4,2.4 Integration with Layout Algorithms
425 Examples,
426 Results
4.3 Layout Stability
431 Examples L L o
432 Resultso

BIBLIOTHEQUE DU CERIST

Wil

5 Graphical Abstraction L 0oL
5.1 Related Work
5.2 Subgraph Abstraction L.
5.2.1 Representation
522 Defimtion oL
523 Examples.
B.24 Results
5.3 Edge Conceptration
5.3.1 Representation o e
532 Definition
5.3.3 The Complexity of the Edge Concenlration Problem
5.3.4 An Approximate Solution oL 0oL L.
.35 Examples
536 Results e

§ Persistence
6.1 Related Work
3.1.1 Overview of Methods to Achieve Persistence
8.1.2 External Formats for Graph-Based Tools
6.1.3 External Formats for Other Tools
8.2 GRL: An External Kepresentation for Graph-Based Tools . .
5.3 Langunage Extension
5.4 Examples - . .. e
6.5 Results_.... e e

T Extendibility
7.1 Reiated Work e
7.2 An Object-Oriented Graph Editor e
721 GraphClass e
7.22 NodeClass i
723 EdgeClass
7.3 AGENT: A Tool to Automate Extendibility
731 Input Routines o i i e
732 Output Roulines -
733 MenuRoutines. _ L.
7.3.4 Constructors and Destractors L. ..
7.3.5 Clase Hierarchy e e
738 Exceptionlast e
74 Example
7.5 Results

BIBLIOTHEQUE DU CERIST

8 EDGE: An Extendible Graph Editor 133
8.1 Graph Layout 135
8.2 Graphical Abstraction 136
8.2.1 Subgraph Abstraction 136
8.22 FEdge Concentration 137
8.3 Persistence 137
8.4 Extendibility e 138
8.4.1 Changing Visual Appearance 138
8.4.2 Interfacing EDGE with an Existing Application 139
8.4.3 Integrating KDGE with a New Application 139
8.5 Iraplementation L., 139
8.6 Examples 140
8.6.1 A Browser for Entity-Relationship Diagrams 140
8.6.2 A Tool for Visualizing Software Configurations 141
8.6.3 A PERT Chart Editor 143
8.6.4 A Call Graph Animator. 145
8.6.5 A Directory Editor 146
8.6.6 A LogicSimulator oL 148
8.7 Results 150
9 Summary and Future Research _ ... 153
9.1 Graph Layout 153
9.2 Graphical Abstraction 156
9.3 Persistence 158
9.4 Extendibility 159
9.5 Other Areas 160
1I0Conchuston 163
Appendix e 167
A EBNF Grammar for GRL 167
Bibliography o 171

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

List of Figures

1.1 Textual and pictorial representations of agraph
1.2 Development of the Xerox Star (EDGE graph editor)
1.3 Development of the Xerox Star (from {JRVS89])
1.4 Graph editor depicting the import /export relations between mod-

les oL oL e e
2.1 Level hierarchy of a directed acyclicgraph
3.1 GINCOD editor (from [TBT83})
3.2 Software Through Pictures editor
33 PROSPECeditor i i,
3.4 ParaGrapheditor, .., 0o,
35 GERMeditor
386 VIFOReditor e
37 GRABeditor . _ Lo
3.8 DRAG graph drawing program
3.9 DAG graph drawing program
3.10 1SI editor {from [Mes89])
3.11 GraphEd editor, Lo
312 Kb-edit editoro
A3 GMBeditoro
3.14 GraphVieweditor e
4.1 Planar layout can eliminate crossings

4.2 Planar drawings: straight line, and convex (from [CONBS])
4.3 Planar drawings: grid and visibility diagram (from [ET89]} . . .
4.4 Tree drawings: conventional, radial, contour (from [ET89])

4.5 Level assignment can affect total edge length
4.6 Level assignment can affect number of crossings
4.7 Coordinate system
4.8 Overview of constraint manager architecture _,
4.9 Constraint example: family tree, ..,,

4.10 Constraint example: PERT chart

BIBLIOTHEQUE DU CERIST

Xl

4.11
1.12
413
414
1.15
4.16
4.17
418
4.19
4,20
421
492
4.23

3.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

8.1
6.2
83
5.4
6.5

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4

Constraint example: UNIX tools {without and with constraints)

Examples of layouf consgiraints and instability
Example from 4.12, but with stability (radius G}
Example from 4.12, but with stability {radius 1)
“World” example of layout stability: Before
“World” exampie of layout stability: Instable
“World” example of layoul. stability: Stable
“UNIX” example of layout stability: Before
“UNIX” example of layout stability: Instable
“UNIX” example of layout stability: Stable|
“W2” example of layoul stability: Before
“W2t” example of layout stability: Instable
“W2t* example of layout stability: Stable

Dispiay of a compound digraph (from (SM91}).
Black-, grey-, and white-hox views of a subgraph abstraction
Adding edge causes unnecessary edge crossing
Multi-leve] hierarchical subgraphk abstraction
Separate view of a subgraph abstraction
A graph and its representation using an edge concentration
Comparison of two coverings by complete bipariite subgraphs . .
Comnter example
Series of edge concentrations L.,
Texchk program - includes relation .,
Calls program — definef/use relation
W2t program — calls relation (before}
W2t prograim — calls relation (after) L0
Xcal program - includes relation L0
Fig program —includes telation L,

DRAG examples (from [T1i88])

DAG example (from {GNVS8]) :

IDL overview {from [Lam87])
IDL example (from [Fam87)) e .
Expression evaluation graph

AGENT program generator tool
Two bit comparator application e e
GRL input for two bit comparator application.
Class declarations for two bit compearator application

Terminal session showing ihe EDGE graph editor | -

EDGE tayout algorithms: Sugiyama, tree, undirected planar . .

A browser for entity-relationship diagrams
A toal for visualizing software configurations

BIBLIOTHEQUE DU CERIST

8.5
8.6
8.7
8.8

9.1
9.2

X

A PERT charteditor 143
A call graph animator L. Lo 145
Adirectory editoro oL 147
Alogicsimulator o 149
Traditional representations 155
Single- and bi-directional layout 157

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

List of Tables

3.1

4.1
4.2
4.3
4.4

5.1

6.1
6.2
6.3
6.4

8.1

Comparison of grapheditors 33
Layout time comparison 0. 53
Stable vs. instable layout: edge additions (“World”} 70
Stable vs. instable layout: edge additions (“UNIX”) 70
Stable vs. instable layout: edge additions (*"W2t”) 71
Effectiveness of edge concentration algorithm 99
Standard set of graph attributeso 111
Standard set of node attributes L, 111
Standard set of edge attributes oL 112
Standard set of layout constraint attributes 112
Customizationeffort oo oo 150

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

“A picture is worth
th d words.”
Chapter 1 O nonymous

Introduction

The recent proliferation of high quality graphics workstations has been closely
followed by interactive tools that present information to the user graphically
rather than using traditional, textual representations. A graphical user inter-
face makes tools easier to learn, use, and understand because humans recognize
patterns better when they are presented pictorially. In [Rob87], Robins gives a
compelling example of why “a picture is worth a thousand wards”. Here, two
representations of a graph are given - one as a list of edges and the other as a
drawing of the graph (see figure 1.1!). Important properties of the graph — that
it is a binary tree and that “K™” is the root of the tree - are immediately obvicus
from the drawing. The list of edges contains the same information, but the user
has to consider each edge and compute the transitive closure (possibly sketching
a drawing in the process) to extract this information.

List of edges: ﬂ
(K,B), (K.C),

(B,D), (B.E), K]
(DH), (E.]),

(C.F), (C,G), C]
(£.4), (G,A)

Figure 1.1: Textual and pictorial representations of a graph

There are many different ways of presenting information graphically, and
one of the most general is to represent the information as a graph. Informally, a

Unless otherwise noted, the graphs shown as examples are drawn by the EDGE graph
editor described in chapter 8.

BIBLIOTHEQUE DU CERIST

2 CHAPTER 1. INTRODUCTION

graph consists of a set of nodes and a set of edges. Each node typically represents
some object and the edges represent binary relationships between these objects.
Informaticn can be associated with the nodes and edges of the graph. Graphs are
used to convey physical or concepiual information in many different application
areas. The following lists a few applications of graphs in computer-reiated fields;

¢ Sofiware: Graphs are used in all phases of software development from
flowcharts, data structure animation, data flow diagrams, finite state au-
tomata, peiri nets, and syntax graphs to call graphs and software config-
uration dependency graphs. They are also heavily used in the relatively
new area of visual programming [Shu89, G1ig0].

s+ Hardware: Computer hardware gates can be interconnected to form com-
binational logic networks,

e Daitabase: An entity-relationship diagram [Che76, Gan9{], commonly
used for the conceptual design of database schemas, is a graph consist-
ing of eniities, relations, and attributes. The user interface of hypertexs
systems {Con&7] is often based on graphs.

Metworking: Graphs are used to display network configurations where
nodes represent machines and edges the physical connection between them.
Reachability graphs are nscd to verify commaunication protocols[CLSg].

s Artificial Intelligence: Semantic nets used to represent knawledge{Bra79).

¢ Rusiness: PERT and CPM charts [CCP87], used in the area of project
management, are graphs that help a project manager visualize the depen-
dency relationships among various subprojects.

The ierminoiogy used in the application areas listed above indicates 2 wider
variety than is actually the case. Syniax trees, entity-relationship diagrams,
networks, semantic nets, PERT charts and the rest - all are different forms of
graphs.

Just as graphs provide a general representation of information, editing is a
general model of interaction for user interfaces. In {DS90] 1t is argued that any
interactive application could present a graphical representation of its data and
allow the user to edit it and to update the representaiion. For example, a mail
program could present a graphical vepresentation of & mailbox which the user
would edit to read or send mail messages. Direct manipulation [Shn8l}, is a
particular form of interaction in which the user specifies objects hy selecting
them “directly” on the acreen using a pointing device (e.g. a mouse) rather than
specifying them “indirectly” fe.g. by name).

A graph edilor is an Interactive tool that presents a sraph to the user picto-
rially and allows the user to edit the graph. The user can add, delete, or edit

BIBLIOTHEQUE DU CERIST

IE;E] E:‘;‘FI [Posisaript] [Cedar]

[t eh J[L mooe Hbocie [[Fase J[sitmcson] [Cormtraint J[€1mscerira]

Figure 1.2: Development of the Xerox Star (EDGE graph editor)

nodes and edges in the graph and the changes will be reflected in the display
of the graph. A graph editor is a powerful and widely-applicable tool because
it combines a general graphical representation of information (a graph) with a
general model of interaction (an editor).

Graph editors can support a wide range of user interaction. Figures 1.2 and
1.4 show examples of two extremes — one with little or no editing of the graph
and the other with frequent and continuous updates.

The graph editor shown in figure 1.2 depicts the development of the Xerox
Star, a personal computer designed for use by business professionals in an office
environment. This information was extracted from a (presumably manually-
drawn figure) given in [JRV*89] and shown in figure 1.3. The graph shows how
related systems influenced each other (the thick lines represent direct successors
of a system). In this example, the information being displayed is reiatively static
and little or no editing of the graph is required. The placernent of the nodes
and edges in figure 1.2 is done automatically as opposed to being positioned
manually by the user. The layouts are of comparable quality. Juding by one of
the often-used concrete measures of layout quality, the number of edge crossings,
the layouts are equally good {both have 24 crossings). However, reliance on the
automatic layout of the graph (which takes 15 seconds on a Sun 3 workstation)
is surely faster than a manual layout. This example shows the benefit of using

BIBLIOTHEQUE DU CERIST

iMatular c
Eregramming Srmailtalk
Sysfen (SR}

¥

Hesa

j

Cadar

Simuia Reactive Engine HLS Sketcnpad
N TN .

CHAPTER 1. INTROBUCTION

Memes

Altoy

Y
Oraw Markup

/ Gypsy
™

Pygmalion

Tajo \ P

[XCE) Star

A md +
Mamlr!sosh Deiuxe Paint

VigwFaint
fgogs % mesieat

Metaphor
Workstation \
Cognition
MCAE
ac i vigwPgint 2.9 Sysiam

Figure 1.3: Development of the Xerex Star (from DRVA9))

Augment

N

Fregs

Imaroress

3

Paostscript

BIBLIOTHEQUE DU CERIST

1.1. MOTIVATION AND GOALS 5

diss/nodule_rel .grl

|Wmllgwwm][ctmmng]

Figure 1.4: Graph editor depicting the import/export relations between modules

a graph-based tool to present information to the user, and, in particular, the
benefits of automatic graph layout.

At the other extreme, the information being displayed may be changing
rapidly. Consider the graph editor shown in figure 1.4 depicting the import /export
relationship among modules of a program [Luc90]. The graph in this case is au-
tomatically generated from the source code of a Modula program and thus the
frequency of changes is on the order of minutes rather than years. Conceivably,
the user could access the source code through the editor and changes would he
reflected in the graph's representation immediately,

This dissertation presents the design of an eztendible graph edilor which
is a graph edilor that can easily be adapted to a wide variety of applications.
Changes made by the user will not only be reflected in the graphical represen-
tation of the graph, but also in the application itself. The next section presents
the motivation and goals of this work and points out the shortcomings of ex-
isting graph editors. The subsequent section presents an overview of the main
research contributions of the thesis. This chapter closes with an overview of the
organization of the rest of this presentation.

1.1 Motivation and Goals

Graph editors have been developed for numerous applications [BNT86, WPS86,
CLA8, BCLY0, Brug8, RDLK90]. When using a graph editor for a particular
application, application-specific actions are associated with the editing of the
graph. For example, consider a graph editor for project management which

