
Frances N ewbery Paulisch

The Design of an
Extendible Graph Editor

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitllt Karlsruhe
Postfach 69 80
Vincenz·Priessnitz·StraBe 1
D·76131 Karlsruhe, Germany

Author

Frances Newbery Paulisch
Siemens AG, ZFE BT SE 32

Juris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Otto·Hahn·Ring 6, D·81739 München, Gennany
E-mail: paulisch@ztivax.zfe.siemens.de

CR Subject Classification (1991): D.2.2, 1.3.4, D.1.5, 0.2.2, H.2.3, D.2.rn

ISBN 3-540-57090-X Springer-Verlag Berlin Heidelberg New York
ISBN O·387·57090-X Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Al! rights are reserved, whether the whole or part
of the materiai is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITeut version, and permission for use must aiways be obtained from
Springer~ Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

Graphs can be used to convey information about relationships in many appli­
cations. State transition diagrams, PERTjCPM charts, cali graphs, and entity­
relationship diagrams are a few examples of many applications involving graphs.
Typically, nodes in the graph represent items in the application (e.g. astate,
an activity, a program module) and the edges represent the relationships among
these items (e.g. state transition, activity duration, procedure invocation). A
graph editor is an interactive tool that presents a graph to the user pictorially
and allows the user to edit the graph. The recent proliferation of graph edi­
tors for particular applications indicate their effectiveness as the graphical user
interface to an application. Many designers, however, are hesitant to use the
graph editor model because of the high cost of developing such a graphical user
interface.

This book presents the design of an extendible graph editor, which is a graph
edit or that can be adapted easily to many different application areas. The advan­
tages of using a graph editor will thus be available for a minimal customization
effort. Several fun dament al and recurring problem areas associated with graph
editors are investigated and a solution is proposed for each. The specifie topics
investigated are:

• Graph layout: How can application-specific layout requirements, individ­
ual preferences, and layout stability be integrated with layout algorithms?
A layout constraint mechanism is presented which can easily be combined
with various graph layout algorithms.

• Graphical abstraction: How can users deal with large graphs containing
hundreds of nodes and thousands of edge crossings? A novel clustering
technique called edge concentration is presented which can reduce the ap­
parent complexity of the graph. Alternatively, a subgraph can be specified
and viewed as a multi-level graphical abstraction either in the context of
the graph or in a separate view.

• Persistence: How can the graph structures produced by the editor be kept
in long-term storage, especially if the node and edge data structures have
been extended for a particular application? The proposed solution uses a
standardized, external format forgraphs. A program generator tool reads
the graph, node, and edge class declarations and automatically generates
routines for reading, writing, and editing these data structures.

• Extendibility: How should the editor kernel be structured to be adaptable
to various applications? The object-oriented design of the proposed graph
editor makes it easy to adapt.

To demonstrate their feasibility, the proposed solutions have been incor­
porated into EDGE, an extendible graph editor prototype. EDGE has been

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

adapted to a number of applications induding: a browser for entity-relationship
diagrams, a tool for visualizing software configurations, a PERT chart editor, a
cali graph animator, a directory editor, and a logic simulator.

This document iB a revised version of my doctoral dissertation from the
Faculty of Informatics at the University of Karlsruhe (FRG)presented on May
7, 1991. 1 thank my advisor, Prof. Dr. Walter F. Tichy, for his invaluable
guidance over the past years as well as my dissertation's co-referee, Prof. Dr.
A. Schmitt.

1 particularly thank Karl-Friedrich Bëhringer, Stefan Manke, and Stefan
Strugies for their valuable contributions to EDGE. Special thanks go to BaIa
Krishnamurthy, without whose encouragement 1 might nevel have made it this
far. The support of my family was an important factor in completing this work.

Finally, 1 would like to thank the EDGE users at companies, research insti­
tutions, and universities in the United States and Europe. Their strong interest
lends credence to my daim that an extendible graph editor is an appropriate
graphical user interface ta a wide range of applications.

Frances Newbery Paulisch
June 1993

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

1 Introduction
1.1 Motivation and Goals .
1.2
1.3

Research Contributions
Organization .

2 Definition of Terms .
2.1 Graphs
2.2 Graph Editors

3 Related Work: Graph Editors
3.1 Special-Purpose Graph Editors .
3.2 General-Purpose Graph Editors
3.3 Extendible Graph Editors
3.4 Summary

4 Layout Aigorithms and Layout Constraints .
4.1 Related Work .. .
4.1.1 Planar Graphs .. .
4.1.2 Undirected Graphs
4.1.3 Trees........
4.1.4 Directed Graphs ..
4.2 Layout Constraints
4.2.1 Low-Level Constraints
4.2.2 Constraint Manager ..
4.2.3 Three-Dimensional Constraints
4.2.4 Integration with Layout Algorithms
4.2.5 Examples
4.2.6 Results.....
4.3 Layout Stability
4.3.1 Examples.
4.3.2 Results

1
5
7
8

11
11
13

15
16
23
26
33

35
35
38
39
40
41
45
47
47
48
49
50
53·
53
55
69

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

;) Graphical Abstraction .
5.1 Re!ated Work ..
5.2 Subgraph Abstraction.
5.2.1 Representation.
5.2.2 Definition
5.2.3 Examples
5.2.4 Results.....
5.3 Edge Concentration
5.3.1 Representation .. .
5.3.2 Definition
5.3.3 The Complexity of the Edge Concentration Problem
5.3.4 An Approximate Solution.
5.3.5 Examples.
5.3.6 Resulta

6 Persistence .
6.1 Re!ated Work
6.1.1 Overview of Methods to Achieve Persistence
6.1.2 ExternaI Formats for Graph-Based Toois ..
6.1.3 External Formats for Other Tools ...•..
6.2 GRL: An ExternaI Representation for Graph-Based Tools.
6.3 Language Extension.
6.4 Examples .
6.5 Results........

7 Extendibility
7.1 Related Work
7.2 An Objed-Oriented Graph EditoI .
7.2.1 Graph Class
7.2.2 Node Class
7.2.3 Edge Class
7.3 AGENT:A Too! to Automate Extendibility
7.3.1 Input Routines ..
7.3.2 Output Routines
7.3.3 Menu Routines
7.3.4 Constructors and Destructors
7.3.5 Class Hierarchy
7.3.6 Exception List
7.4 Example
7.5 Results

73
73
76
76
80
81
81
81
82
83
84
86
90
99

101
102
102
104
106
109
113
114
117

119
119
121
f22
124
125
125
127
127
127
127
128
128
129
131

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8 EDGE: An Extendible Graph Editor .
8.1 Graph Layout
8.2 Graphical Abstraction
8.2.1 Subgraph Abstraction .
8.2.2 Edge Concentration
8.3 Persistence
8.4 Extendibility
8.4.1 Changing Visual Appearance .
8.4.2 Interfacing EDGE with an Existing Application
8.4.3 Integrating EDGE with a New Application
8.5 Implementation
8.6 Examples
8.6.1 A Browser for Entity-Relationship Diagrams
8.6.2 A Tool for Visualizing Software Configurations .
8.6.3 A PERT Chart Editor
8.6.4 A Call Graph Animator .
8.6.5 A Directory Editor
8.6.6 A Logic Simulator .
8.7 Results

9 Summary and Future Research
9.1 Graph Layout
9.2 Graphical Abstraction
9.3 Persistence . .
9.4 Extendibility .
9.5 Other Areas

10 Conclusion

Appendix
A EBNF Grammar for GRL

Bibliography.

Index

IX

133
135
136
136
137
137
138
138
139
139
139
140
140
141
143
145
146
148
150

153
153
156
158
159
160

163

167
167

171

183

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

List of Figures

1.1 Textual and pictorial representations of a graph 1
1.2 Development of the Xerox Star (EDGE graph editor) . 3
1.3 Development of the Xerox Star (from [JRV89]) 4
1.4 Graph editor depicting the import/export relations between mod-

ules 5

2.1 Level hierarchy of a directed acyclic graph 13

3.1 GINCOD editor (from [TBT83])
3.2 Software Through Pictures editor
3.3 PROSPEC editor .
3.4 ParaGraph editor .
3.5 GERM editor .
3.6 VIFOR editor .. .
3.7 GRAB editor .. .
3.8 DRAG graph drawing program
3.9 DAG graph drawing program
3.10 ISI editor (from [Mes89]) .
3.11 GraphEd editor .
3.12 Kb-edit editor .. .
3.13 GMB editor
3.14 GraphVieweditor

17
18
19
20
21
22
23
24
25
27
28
30
31
32

4.1 Planar layout can eliminate crossings . 37
4.2 Planar drawings: straight line, and convex (from [CON85]) 38
4.3 Planar drawings: grid and visibility diagram (from [ET89]) 39
4.4 Tree drawings: conventional, radial, contour (from [ET89]) 40
4.5 Level assignment can affect total edge length .. 44
4.6 Level assignment can affect number of crossings . 44
4.7 Coordinate system 45
4.8 Overview of constraint manager architecture. 46
4.9 Constraint example: family tree . 51
4.10 Constraint example: PERT chart 51

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

4.11 Constraint example: UNIX tools (without and with constraints) 52
4.12 Examples of layout constraints and instability . . 57
4.13 Example from 4.12, but with stability (radius 0) 58
4.14 Example from 4.12, but with stability (radius 1) 59
4.15 "World" example of layout stability: Before . 60
4.16 "World" exampie of layout stability: Instable 61
4.17 "World" example of layout stability:Stable . 62
4.18 "UNIX" example of layout stability: Berore . 63
4.19 "UNIX" example of layout stability: Instable 64
4.20 "UNIX" example of layout stability: Stable 65
4.21 "W2t" example oflayout stability:Before . 66
4.22 "W2t" example of layout stability: Instable 67
4.23 ''W2t'' example of layout stability: Stable . 68

5.1 Dispiay of a compound digraph (from [SM91]) . 75
5.2 Black-, grey-, and white-box views of a subgraph abstraction 77
5.3 Adding edge causes unnecessary edge crossing . 78
5.4 Multi-Ievel hierarchicai subgraph abstraction 79
5.5 Separate view of a subgraph abstraction 82
5.6 A graph and its representation using an edge concentration 83
5.7 Comparison of two coverings by complete bipartitesubgraphs 85
5.8 Counter example 89
5.9 Series of edge concentrations 91
5.10 Texchk program - indudes relation. 92
5.11 cans program - deline/use relation. 94
5.12 W2t program - calls relation (before) 95
5.13 W2t program- caUs relation (after) 96
5.14 Xcal program - includes relation 97
5.15 Fig program - includes relation 98

6.1 DRAG examples (from ['Iri88]) 104
6.2 DAG example (from [GNV88J) 105
6.3 IDL overview (from [Lam87]) 107
6.4 IDL example (from [LamS7]) 108
6.5 Expressionevaluation graph . 113

7.1 AGENT program generator tool 126
7.2 Two bit comparator application. 130
7.3 GRL input for two bit comparator application. 131
7.4 Class declarations for t'Wo bit comparator application. 132

8.1 Terminal session showing the EDGE graph editor . . . 134
8.2 EDGE layout algorithms: Sugiyama, tree, undirected planaI. 135
8.3 A browser for entity-relationship diagrams . . 140
8.4 A tool for visualizing software configurations 142

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XIII

8.5 A PERT chart editar . 143
8.6 A cali graph animatar 145
8.7 A directory editar 147
8.8 A lagic simulator . . . 149

9.1 Traditional representations 155
9.2 Single- and bi-directional layout . 157

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

List of Tables

3.1 Comparison of graph editors . 33

4.1 Layout time comparison ... 53
4.2 Stable vs. instable layout: edge additions ("World") 70
4.3 Stable vs. instable layout: edge additions ("UNIX") 70
4.4 Stable vs. instable layout: edge additions ("W2t") 71

5.1 Effectiveness of edge concentration algorithm 99

6.1 Standard set of graph attributes 111
6.2 Standard set of node attributes 111
6.3 Standard set of edge attributes 112
6.4 Standard set of layout constraint attributes 112

8.1 Customization effort 150

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1

Introduction

"A picture is worth
a thousand words."

- Anonymous

The recent proliferation of high quality graphics workstations has been closely
followed by interactive tools that present information to the user graphically
rather than using traditional, textual representations. A graphical user inter­
face makes tools easier to learn, use, and understand because humans recognize
patterns better when they are presented pictorially. In [Rob87J, Robins gives a
compelling example of why "a picture is worth a thousand words". Here, two
representations of a graph are given - one as a list of edges and the other as a
drawing of the graph (see figure 1.1 1). Important properties of the graph - that
it is a binary tree and that "K" is the root of the tree - are immediately obvious
from the drawing. The list of edges contains the same information, but the user
has to consider each edge and compute the transitive closure (possibly sketching
a drawing in the process) to extract this information.

List of edges:
(K,B), (K,G),
(B,D), (B,E),
(D,H), (E,I),
(G,F), (G,G),
(F,J), (G,A)

Figure 1.1: Textual and pictorial representations of a graph

There are many different ways of presenting information graphically, and
one of the most general is to represent the information as a graph. Informally, a

1 Unless otherwise noted, the graphs shown as ex amples are drawn by the EDGE graph
editor described in chapter 8.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2 CHAPTER 1. INTRODUCTION

graph consists of a set of nodes and a set of edges. Each node typically represents
some ohject and the edges represent hinary relationships between these ohjects.
Information can he associated with the nodes and edges of the graph. Graphs are
used to convey physical or conceptual information in many different application
areas. The foUowing lists a few applications of graphs in computer-related fields:

" Software: Graphs are used in ail phases of software development from
fiowcharts, data structure animation, dataflow diagrams, finite state au­
tomata, petri nets, and syntax graphs to cali graphs and software config­
uration dependency graphs. They are also heavily used in the relatively
new area of visual programming [Shu89, Gli90] .

• Hardware: Computer hardware gaies can be interconneded to formcom­
binationallogic networks.

" Database: An entity-relationship diagram [Che76, Gan90], commonly
used for the conceptual design of datahase schemas, is a graph consist­
ing of entities, relations, and attributes. The user interface of hypertext
systems [ConS7] is often based on graphs .

.. Networking: Graphs are used to display network configurations where
nodes represent machines and edges the physical connection between them.
Reachability graphe are used to verify communication protocols[CL88] .

.. Artificial Intelligence: Semantie nets used to represent knowledge[Bra79] .

.. Business: PERT and CPM charts [CCPS7], used in the area of project
management, are graphs that help a project manager visualizethe depen­
deney relationships among varions subprojects.

The terminology used in the application areas listed above indicates a wider
variety than is actually the case. Syntax trees, entity-relationship diagrams,
networks, semantic nets, PERT charts and the rest - al! are different forms of
graphs.

Just as graphs provide a general representation of information, editing is a
genera! mode! of interaction for user interfaces. In [DS90] it is argued that any
interactive application cou Id present a graphical representation of its data and
a.lIow the user to edit it and to update the representa.tion. For example, a mail
program coulcl present a graphica! representation of a mailbox whÎch the user
would edit to read or send mail messages. Direct manipulation [Shn83], is a
particular fOlm of interaction in wlüch the user specifies objects by selecting
them "directly" on the screen using a pointing device (e.g. a mouse) rather than
specifying them "indirectly" (e.g. by name).

A grapA editor is an interactive tool that presents a graph to the user picto­
rially and allows the user to edit the graph. The user can add, delete, or edit

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

Figure 1.2: Development of the Xerox Star (EDGE graph editor)

nodes and edges in the graph and the changes will be reflected in the display
of the graph. A graph editor is a powerful and widely-applicable tool because
it combines a general graphical representation of information (a graph) with a
general model of interaction (an edit or).

Graph editors can support a wide range of user interaction. Figures 1.2 and
1.4 show examples of two extremes - one with little or no editing of the graph
and the other with frequent and continuous updates.

The graph editor shown in figure 1.2 depicts the development of the Xerox
Star, a personal computer designed for use by business professionals in an office
environment. This information was extracted from a (presumably manually­
drawn figure) given in [JRV+S9] and shown in figure 1.3. The graph shows how
related systems influenced each other (the thick lines represent direct successors
of a system). In this example, the information being displayed is relatively static
and little or no editing of the graph is required. The placement of the nodes
and edges in figure 1.2 is done automatically as opposed to being positioned
manually by the user. The layouts are of comparable quality. Juding by one of
the often-used con crete measures of layout quality, the number of edge crossings,
the layouts are equally good (both have 24 crossings). However, reliance on the
automatic layout of the graph (which takes 15 seconds on a Sun 3 workstation)
is surely raster than a manual layout. This example shows the benefit of using

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

Cedar

v
Macintosh

Il

!
Il
'1 ~

Mocll ViswPoint 2. a

CHAPTER 1. INTRODUCTION

Interleaf

\
Cognttlon

MCAE
System

Oe!uxe Paint

Figure 1.3: Development of the Xerox Star (from [JRV89])

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Ll. MOTIVATION AND GOALS 5

1 Gr Il L.,.,u' II_II Edge IISubsr Il Conotroint Il Clus' ... '", 1

Figure 1.4: Graph editor depicting the import/export relations between modules

a graph-based tool to present information to the user, and, in particular, the
benefits of automatic graph layout.

At the other extreme, the information being displayed may be changing
rapidly. Consider the graph editor shown in figure 1.4 depicting the import/export
relationship among modules of a program [Luc90]. The graph in this case is au­
tomatically generated from the source code of a Modula program and thus the
frequency of changes is on the order of minutes rather than years. Conceivably,
the user could access the source code through the editor and changes would be
reflected in the graph's representation immediately.

This dissertation presents the design of an extendible graph edit or which
is a graph editor that can easily be adapted to a wide variety of applications.
Changes made by the user will not only be reflected in the graphical represen­
tation of the graph, but also in the application itself. The next section presents
the motivation and goals of this work and points out the shortcomings of ex­
isting graph editors. The subsequent section presents an overview of the main
research contributions of the thesis. This chapter closes with an overview of the
organization of the rest of this presentation.

1.1 Motivation and Goals

Graph editors have been developed for numerous applications [BNT86, WP86,
CL88, BCL90, Bru88, RDLK90]. When using a graph editor for a particular
application, application-specific actions are associated with the editing of the
graph. For example, consider a graph editor for project management which

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

