BIBLIOTHEQUE DU CERIST

A. Lingas R. Karlsson S. Carlsson (Eds.)
| Geol-Fo0

Automata, Langué\“g“‘es
and Programming

20th International Colloquium, ICALP 93
Lund, Sweden, July 5-9, 1993
Proceedings

Springer-Verlag
Berlin Heidelbers New York
London Paris Tokye

Ilong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series BEditors

Gerhard Goos Jurls Harlmmanis

Universitit Karlsruhe Cornell University

Postfach 69 80 Deparument of Computcr Science
Vincenz-Priessnitz-Strabe ! 4130 Upson Hall

D-76131 Karlsruhe, FRG Tthaca, NY 14853, UUSA

Volume Editors

Andrzej Lingas

Rolf Karlsson

Department of Compster Science, Lund University
RBox 118, §-22100 i.und, Sweden

Svante Carlsson
Department of Conputer Seiznce, University of Luled
5-95187 Luled, Sweden

CR Subiect Classification (19%1): 7 D1, L1, E3,G2,1.35

1SBN 3-540-56939-1 Springer-Verlag Berlin IHeidelberg New York

TSBN (-387-56939-1 Springer-Verlag New York Berlin Heidelberg . “’)’thé

This work is subiect to copyright. All rights are reserved. whether the whole or part.
of the material is concerned, specificatly the rights of translation, reprinting, re-use
of illustrations, recitation, broadeasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be ohtained from
Springer-Verlag, Viclations are liable for prosecution under the German Copyright
Law,

€ Springer-Vertag Berlin Heldelberg 1993
Printed in Germany

Typesetting: Camera ready by anthor
Printing and binding: Druckhars Beltr, Hemsbach/Bergstr.
45/3146-343210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

FOREWORD

The International Colloquium on Automata, Languages and Programming (ICALP)
1s an annual conference series sponsored by the European Association for Theoreti-
cal Computer Science (EATCS). It is intended to cover all important areaa of theo-
retical computer science, such as: compntability, automata, formal languages, term
rewriting, analysis of algorithms, computational geometry, computational complexity,
symbolic and algebraic computation, cryptography, data types and data structures,
thecry of data bases and knowledge bases, semantics of programming languages,
program specification, transformation and verification, foundations of logic program-
ming, theory of logical design and layout, parallel and distributed computation, the-
ory of concurrency, and theory of robotics.

ICALP 93 was held at Lund University, Sweden, from July 5 to July 9, 1993,

Previous colloquia were held in Wien (1992), Madrid (1991), Warwick (1890),
Stresa (1989), Tampere (1988), Karlsruhe (1987), Rennes (1988), Nafplion (1985},
Antwerp (1884), Barcelona (1983), Aarhus (1882), Haifa (1981}, Amsterdam (19808),
Graz (1879}, Udine (1978}, Turku (1977}, Edinburgh {1976), Saarbriicken (1974) and
Paris (1972). ICALP 94 will be held in Jerusalem from July 11 to July 15, 1994.

The number of papers submitted was 151. Each submitted paper was sent to at
least four Programme Comumitice members, who were often assisted by their referees.
The Programme Committee meeting took place at Lund University on the 5th and
6th of February 1993 (the names of those participating in the meeting are underlined
below). This volume contains the 51 papers sclected at the meeting plus the five
invited papers.

We would like to thank all the Programme Committee members and the referees
who assisted them in their wark. The list of referees is as complete as we can achieve
and we apologize for any omissions or errors.

The members of the Organizing Committee, the membess of the algorithm group
at our department sometimes assisted by their families, our departmental secretaries,
and many other members of the department deserve cur gratitude for their contri-
butions throughout the preparations.

We also gratefully acknowledge support {rom Swedish Natural Science Research
Council, Apple Computer AB, the Department of Computer Science at Lund Uni-
versity, Lund Institute of Technology, Lund University, and the city of Lund.

Svante Carlsson, Rolf Karlsson, and Andrzej Lingas
April 1998, Lund Universily

BIBLIOTHEQUE DU CERIST

W

Invited Lecturers

S. Abiteboul, INRIA Roecquencourt;

. Blum, Berkeley:

D. Dolev, IBM San José and Jerusalem,;
L. Hemachandra, Rochester;

1. Simon, Sao Pauls.

Programme Committee

S. Abiteboul, Paris

J. Diaz, Barcelona

R. Freivalds, Riga

¥ Gécseg, Szeged

G. Gonnet, Zurich

Y. Gurevich, Ann Arbor
1. Harel, Rehaovot

T. Harju, Turku

1. M. Havel, Prague

4. Hastad, Stockholm
J.-P. Jouannzud, Paris

D. Kirkpatrick, Vancouver
H.-J. Kreowski, Bremen
W. Kuich, Vienna

G. Levi, Pisa

A. Lingas, Lund {chairman)
T. Maibaum, London

A Mazurkiewicz, Warsaw
M. Nielsen, Aarhus

M. II. Overmars, Utrecht
W. Thomas, Kial

U. Vishkin, Tel-Aviv and Maryland
P. Wolper, Liege

Organizing Committea

Arne Andersson, Lund;

Svante Carlsson, Luled (co-chairman);
Rolf Karlsson, Lund {co-chairman};
Andrzej Lingas, Lund,

Ola Petersson, Vaxjo.

BIBLIOTHEQUE DU CERIST

Abrahamson K.
Alur R,
Anderson R,
Andersson A,
Anstee R.P.
Arnborg S.
Amold A.
Baaz M.
Balcdzar L.
Bang-Jensen J.
Bartha M.
Bceauquier D,
Bernman P.
Bernot G.
Berry G.
BestE.
Bhattacharia B.
Boasson L.
Bodlaender FLL.
Bonatti P,
EBreazu-Tannen V,
Carlsson S.
Casas R,
Cassaigne J,
Choffrut C.
Comon
Compton K,
Courcelle B,
Craig T.S.
Crochemore N,
Csakany B.
Csirik I.
Culberson J.
Damgaard 1B.
Delorme
Dessmark A.
Diaconescu
Dickert V.
Dovier A,
Drewes F.
Drostc M.
Emerson E.A,
Engberg U.H.
Enjalbert P,
Farvardin N.
Frandsen G.

Fuchs NLE,

List of Referees
Fiilop Z. Lazard 1.
Gabarré J. Leduc G.
Gallo G. Leroy X.
Garrido O. 1.evcopoulos C.
Gavalda R. Liestman A.
Giacobazzi R. Luccio F,
Godefroid P. Maggs B.M.
Goldmann M. Magnusson B.
Goldreich O. Manorioci D,
Gole2 17, Manovssakis Y.
Graedel E. Martini 8.
Grandjean E. Masini A.
Grosse-Rhode M. Matias Y.
Habel A. Mattsson C.
Hajnal P. Milo T.
Hankin C.L. Miltersen P.B.
Hansen M.R. Moggi L.
Higham L., Montanari U.
Hodkinson IM. Moreau L,
Honkals J. Moscowitz Y,
Hortmann M. Mossakowski T,
Horviih G. Nagarajan R.
Inverardi P, Nickl F.
JaJa }, Niemi V.
Jancar P, Nilsson B.
Jantzen M. Nilsson S.
Jebelean T. Olderog E.-R.
Jenmer B, Pacholski L.
Jennings E. Padawitz P,
Jurag M, Paz A,
Kameda T. Petersson ().
Karhumiki J. Pin IE.
Kari J. Pippenger N.
KariL. Plump D,
Karlsson R. Poigné A,
Kasif §. Potthoff A.
Khuller S. Prodinger H.
Klarlund N, QianZ,
Klop I W. Rajasckaran S.
Kinge W. Raman R,
Knoop J. RazD.
Koubek V. Regnier M.
Krivanek M. Renvall A,
Kudilek M. Reyaolds MLA.
La Poutré J.A. Richter M.M.
Lagergren J. Ruthing O.
Landaun G.M. Sahinaip S.

Vil

Sales T.
Salomaa A.
Sannella D,
Sassone V.
Schicber B,
Schmid U.
Schmidt E.M.
Séébold P.
Seibert S.
Seidl H.
Serna M.
Skyum 8.
Staiger L.
Steffen B.
Steinby M.
Stevenne J.-M.
Steyaert J.-M.
Stirling C.
Storlind R.
Stout Q.
Taylor Paul
Tel G.
Thuorimella R.
Tison

Toran J.
Treinen R.
Tsantilas T.
Turin G.
Upfal E.
Valkema E.
Varricchio S.
Vianu V.
Vickers 8.1
Wagner A,
Weber A.
Wichagen R.
Wilke T.
Willem J,
Winskel G.
Wojciechowski S.
Woo Ryu K.
Yesha¥.
Young N.
Ziclonka W.

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

TABLE OF CONTENTS

Session 1: Programs and Data Structures

Program Result Checking: A New Approach to Making Programs More
Reliable (Invited)
S B I o e e e 1

Dynamic Interpolation Search in ofloglog n} Time
AL Andersson and C. Mallsson i 15

Searching Among Intervals and Compact Routing Tables
G.N. Frederickson it e e e 28
Session 2: Approximation Complexity

The Approximation of Maximum Subgraph Problems
C. Lund and M. Yannekakis i i 40

Polynomially Bounded Minimization Problems Which arc Hard
to Approximate
g 1 - P o2

Primal-Dual Approximation Algoerithms for Integral Flow and Multicut in
Trees, with Applications to Matching and Set Cover
N. Garg, V. V. Vazirani, and M. Yannakakis, 64

The Complexity of Approximating PSPACE-Compleie Problems

for Hierarchical Specifications
M. V. Marathe, H.B. Hunt III, and §.5. Ravi oo iiiiiiinnes 78

Session 3: Graph Algorithms

Problems on Pairs of Trees and the Four Colour Problem of Planar Graphs

A Crumaj and A. Gibbons e 88
Constructing Competitive Tours from Local Inforrmation

B. Kolyanasundaram and K.R. Pruks i 102
Treewidth and Pathwidth of Permutation Graphs

H. Bodleender, T. Kloks, and D. Kratsch 114
A Theory of Even Funct.iona.lls and Their Algorithmic Applications

JW. Jaromczyk end G. Swiglek s 126

Session 4: Algorithm Analysis and Computational Geometry

Exact Asymptotics of Divide-and-Conquer Recurrences

P Flajolet and M. Golin e 137

Optimal Bounds for the Change-Making Problem
D Kozen and 8. Zaks e s 150

BIBLIOTHEQUE DU CERIST

The Complexity of N-body Simulation
JH Reifand S.R. Tatecocovns, e e e e 152

A Simple Method for Resolving Degeneracies in Delaunay Triangulations
M.B. Dillencourt and W.D. Smith 177
Session 5: Complexity

Fault-Tolerance and Complexity (Inviied)
LA, Hemachandra e 189

Reversal-Space Trade-offs for Simultaneous Resource-Bounded
Nondeterministic Turing Machines
HoYamamolo ... e e 203

On the Computational Power of Discrete Hapfield Nets
P.Orpomen ... e e ... 215

Session §: Probabilistic Complexity and Crypiography

On Randomized Versus Deterministic Computation
M. RKarpinski and B. Verbeek cc0i oo i e 227

Lower Bounds for One-Way Probabilistic Communication Complexity
FooAbagey e e e 241

Maintaining Discrete Probability Distributions Optimally
T. Hagerup, K. Mehlhorn, and I. Munre e 253

Secure and Efficient Off-Line Digital Money
M. Franklin and M. Yung ... i e 265
Session 7: Computability, Formai Languages avd Aatomata

Computational Depth and Reducibility
D.W. Juedes, LI Lathrop, and JH. Lutzo 277

Learnability: Admissible, Co-Finite, and Hypersimple Languages
G. Baliga and J. Case (. . e 289

Inclusion is Undecidable for Pattern Langnages
T. Jiang, A. Saiomae, K. Salomes, and S. Yu e 301

Mew Decidability Results Concerning Two-Way Counter Machines
and Applications
0.H. Ibarra, T. Jiang, N. Tren, and H. Wang 313

Session 8: Logic, Formal Languages and Automata

Cobham’s Theorem Seen Through Biichi’s Theorem
C. Michauz end R. Villemaire e e 325

BIBLIOTHEQUE DU CERIST

Xl

Logical Definability on Infinile Traces
W. Ebinger and A, Muscholl i 335

Algebras for Classifying Regular Tree Languages and an Application
to Frontier Testability

T Wilke .. e e e 347
Finite Automata as Characterizations of Minor Closed Tree Families
A Gupla . e e 359

Session 9: Parallel and Disributed Algorithms I
On Distributed Algorithms in a Broadcast Domain (Invited)

D. Dolevand D. Malki i e 371
Sparse Networks Supporting Efficient Reliable Broadcasting
B.S. Chlehus, K. Diks, and A. Pelc 388

Session 10: Parallel and Disributed Algorithms II

Strongly Adaptive Token Distribution
F. Meyer auf der Heide, B. Oesterdiekhoff, and K. Wanka 398

Fast Parallel Computation of Characteristic Polynomials by Leverrier’s
Power Sum Method Adapted to Fields of Finite Characteristic

A, Sehonhage ... e 410
Fast Parallel Constraint Satisfaction
A O] T 418

Session 11: Algebraic Aspects of Formal Languages and Automata I
The Product of Rational Languages {Invited)

L I Om e e e 430
On Regular Compatibility of Semi-Commutations

E. Ochmanski and P.-A. Wacrenier iiieiainnn.. 445
Algebraic Aspects of B-Regular Series

B D HTIaS e e et e e 457

Session 12: Algebraic Aspects of Formal Languages and Automata II

Products of Finite State Machines with Full Coverage
DM Cohen and M.L. Fredmancicicviiiiiiiian.. 469

An Effective Version of Stallings’ Theorem in the Case
of Context-Free Groups

G, SEMIZErgUEs .. e e 478
On the Power of Periodic Iteralion of Morphisins
Ao Lepisla ..o e e 496

If a DOL Language is k-Power Free then It is Circular
F. Mignosi and P. Séébold e 507

BIBLIOTHEQUE DU CERIST

Session 13: Concurrency

Deciding True Corncurrency Equivalences on Finite Safe Nets

© L Jategaonkar avd AR, Meyer ..o e 519
"Timed Testing of Coneurrent Systems
W. Vagler . o 232
The Fork Calculus
K. Havelund and K. G. Larsen i iniinnnan. 544
Fxtended Transition Systems for Parametric Bisimulation
P. Invevardi, C. Priami, and D. Yankelevich 558

Bession 14: Temporal Logic

Temporal Logic and Categories of Petri Nets

C. Brounand D. GUrro i i et 570
Decidability of a Partial Order Based Temporal Logic
K. Lodaya, B. HRamanujam, and P.S. Thiegarejan bg2

Lacal Model Checking for Contexi-Free Processes
H Hunger and B. Steffen i i iarin e 583

Session 15: Theory of Programming I

Computing on Structures {Invited)
S. Abiteboul and V. Vienu ..ot e 606

A Partial Solution for D-Unification Based on a Reduction
to ACi-Unification
B Conleean ... o i e e 621

Efficient Anzalysis of Concurrent Constraint Logic Programs
M. Codish, M. Fulaschi, K. Marrioti, and W. Winsborough 533
Session 16: Theory of Programming IT

A Confluent Reduction for the Extensional Typed A-Calculus with Pairs,

Sums, Recursion and Terminal Object
R Di Cosmo and D. Kesner .. . it ta i 645

Modularity of Terminztion and Cenfluence in Combinations of Rewrite
Systems with A,

F. Barbanera end M, Ferndndezo ool i . 6587
From Domains to Automata with Concurrency .

F. Bracho and M. Drosle i 369
What Iz a Universal Higher-Order Programming Language?

R. Kanneganti and R. Carlwrighi 0 i, 632

Author Index ..o 596

BIBLIOTHEQUE DU CERIST

Program Resuit Checking: .
A New Approach to Making Programs More Reliable

Manuel Blum*

Computer Science Division
University of California at Berkeley
94720

Abstract. Program result checking is concerned with designing programs to
check their work. For example, after solving an equation for x, a result-checking
program would substitute x back into the equation to make sure that the answer
obtained is comrect. There are many ways to check resulis, but there has been no
theory to say what constitutes a good check. It is not a good check, for example,
to redo a computation without change a second time. Such recomputation may
uncover an intermillent hardware fault, but it will not uncover a software fault,
and the discovery and elimination of software faulis is the principal goal of this
work. This walk discusses the concepl of result checking, gives several examples,
and outlines the basic theory.

1. Introduction

This talk restricts attention to program result checkers for a certain clean clasg
of computational problems. These problems are compleiely described by specifying
what constitutes correct inputfoutput and acceptable running time, ic. by describing
1. what is an allowable input (io any program for the problem),

2. for cach such input, what is an acceptable (ic. correct) ouiput, and
3. what is an (easily computable} upper bound on the mnning time of a {reasonably
fast) program for the problem,

For each (such} computational problem =, discussion will center on (wo classes
of programs, The first will be a (possibly fanlty) program for solving problem &, The
second will be a (possibly faulty) checker for x. The latter resuit checker for compu-
tational problem = is an efficient program for checking the comeciness of any given
program (supposedly) for problem = on any particular input to the program. Notice
that a checker does not check that the given program for 1t is correct on all inpats, but
only that it is correct on the given input. This is one reason why it is generally easier
1o check a program (on a giver input} than it is to verify a program (prove the pro-
gram correct on all inputs}.

b s work was supported in part by NSF gramt CCRIZ-01092, in parnt by TBM Research Davision, TJ.
Watson Research Center, and in parnt by 1CSI, the International Computer Science Institute, Berkeley,
CA.

A preliminary version of this paper appeared in Blom and Raghavan [BR].
Author’s e-mail address: blum@cs.berkeley.eda

BIBLIOTHEQUE DU CERIST

More precisely, a resuit checker for problem 7 is an algorithm that is supplied
with: :
1. a (possibly faulty) program for solving computational problem %, given as a black
box, which the checker may run on inputs of its choice; and

2. a particular input for this program.

The checker must determine cither that the ouiput is correct or the program is faulty,
(It may be that both are tmel) To this end, the checker is designed t¢ do efficient
computations that are penmitted to include calling the given program on various
allowable inpuis of the checkers own choosing. If the checker outputs CORRECT,
then this implics that the checker has verified that the output of the given program on
the given input is correct; if it outputs FAULTY, then this implies that the checker
has verified the existence of a fault ir the given program. The latter fault may mani-
fest itself when the program 1§ run on an input different from the given jnput,

Notice above that when a faulty program gives a correct cutput despite its fanlt,
the checker is permitted 1o ocutput either CORRECT or FAULTY, In pariicular, the
checker is permitied to output FAULTY even when the given program outputs a
correci answer on the given input, previded the program is indeed faulty. While this
may ai first appear strange, it is exactly what is wanted: for example, a trivial programn
that gives the same answer on all inputs may be perfectly cosrect on the given input
for no good reason! The checker that discovers the program is junk has good reason
to declare it faulty.

2. Program Resuit Checkers

Let m denote a (computational} decision and/or search problem. For x an inpui
1w 7, let =(x) denoie the cutput of 1. Let P be a program (supposadiy for 7t that halis
on all instances of . We say that such a program P, viewed gs a program for %, has a
Sfault (or bug) if for some instance x of &, P{x) = n(x),

Define an (efficient} program resuit checker €, for problem #n as follows:
€% { ;&) is any probabilistic {expected-poly-time) oracle Turing machine ihat saiisfies
the following conditions, for any program P (supposedly for =) that halis on all
instances of #, for any instance ! of m, and for any positive integer & {the so-called
““security parameier’’) presented in unary:

I. If P has no bugs, ie., £{&)=n(x) for all instances x of £, then with
probabitity” > 1 - 27%, CF (7:k) = CORRECT (i.e., P(I) is correct).

2. U P{I)#ad), then with probability? > 1 — 2%, CZ (k) = BUGGY (ie.,
P has a fault).

Ir the above, it is assumed that any program P for problem r halts on all

instances of w. This is done in order to heip focus on the problem at hand. In gen-
eral, however, programs do not always halt, and the definition of a “*bug’™ must be

2 This prohability is comiputed over the sample space of all finite sequences of coin flips that € could
have 1odsed. In most examples, including ali those in this paper, program F definitely {rather than preb-
sbly) has 3 bug when CF (k) = BUGGY.

