
A. Lingas R. Karlsson S. Carlsson (Eds.) - ,
Cc 0 1. -lao '

'-- '

" {~'-

Automata, Languages
and Programming

20th International Colloquiurn, ICALP 93
Lund, Sweden, July 5-9, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitlit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe l
D-76131 Karlsruhe, FRG

Volume Editors

Andrzej Lingas
Rolf Karlsson

Juris Hartmanis
Coruell University
Department of Compuœr Science
4130 Upson Hall
Ithaca, NY 14853, USA

Department of Computer Science, Lund University
Box 118, S-22100 Lund, Sweden

S vante Carlsson
Department of Computer Science, University of Luleâ
S-95187 Luleâ, Sweden

CR Subject Classification (1991): F, D.l, E.I, E.3, G.2, 1.3.5

ISBN 3-540-56939-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56939-1 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ail rights are reserved, whether the whole or part
of the material is concemed, specifically the rights of translation, reprinting, re-ùse .
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data baTIks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in ils current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckbaus Beltz, HemsbachJBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

FOREWORD

The International CoIloquium on Automata, Languages and Programming (ICALP)
is an annual conference series sponsored by the European Association for Theoreti
cal Computer Science (EATCS). It is intended to cover ail important areas of theo
retical computer science, such as: computability, automata, formaI languages, term
rewriting, analysis of algorithms, computational geometry, computational complexity,
symbolic and algebraic computation, cryptography, data types and data structures,
theory of data bases and knowledge bases, semantics of programming languages,
program specification, transformation and verification, foundations of logic program
ming, theory of logical design and layout, paraIlel and distributed computation, the
ory of concurrency, and theory of robotics.

ICALP 93 was held at Lund University, Sweden, from July 5 to July 9, 1993.
Previous coIloquia were held in Wien (1992), Madrid (1991), Warwick (1990),

Stresa (1989), Tampere (1988), Karlsruhe (1987), Rennes (1986), Nafplion (1985),
Antwerp (1984), Barcelona (1983), Aarhus (1982), Haifa (1981), Amsterdam (1980),
Graz (1979), Udine (1978), Turku (1977), Edinburgh (1976), Saarbrücken (1974) and
Paris (1972). ICALP 94 will be held in Jerusalem from July 11 to July 15, 1994.

The number of papers submitted was 151. Each submitted paper was sent to at
least four Programme Committee members, who were often assisted by their referees.
The Programme Committee meeting took place at Lund University on the 5th and
6th of February 1993 (the names of those participating in the meeting are underlined
below). This volume contains the 51 papers selected at the meeting plus the five
invited papers.

We would like to thank aIl the Programme Committee members and the referees
who assisted them in their work. The list of referees is as complete as we can achieve
and we apologize for any omissions or errors.

The members of the Organizing Committee, the members of the algorithm group
at our department sometimes assisted by their families, our departmental secretaries,
and many other members of the department deserve our gratitude for their contri
butions throughout the preparations.

We also gratefully acknowledge support from Swedish N atural Science Research
Council, Apple Computer AB, the Department of Computer Science at Lund Uni
versity, Lund Institute of Technology, Lund University, and the city of Lund.

Svante Carlsson, Rolf Karlsson, and Andrzej Lingas
April 1993, Lund University

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Invited Lecturers

S. Abiteboul, INRIA Rocquencourt;
M. Blum, Berkeley;

VI

D. Dolev, IBM San José and JerusaJemj
L. Hemachandra, Rochester;
1. Simon, Sao Paulo.

Program.me Committee

S. Abiteboul, Paris
J. Diaz, Barcelona
R. Freivalds, Riga
F. Gécseg, Szeged
G. Gonnet, Zurich
y. Gurevich, Ann Arbor
D.Harel, Rehovot
T. Harju, Turku
I. M. Havel, Prague
J. Hastad, Stockholm
J.-P. Jouannaud, Paris
D. Kirkpatrick, Vancouver
H.-J. Kreowski, Bremen
W. Kuich, Vienna
G. Levi, Pisa
A. Lingas, Lund (chairman)
T. Maibaum, London
A. MazurkiewÎCz, Warsaw
M. Nielsen, Aarhus
M. H. Overmars, Utrecht
W. Thomas, Kiel
U. Vishkin, Tel-Aviv and Maryland
P. Wolper, Liege

Organizing Committee

Arne Andersson, Lundi
Svante Carlsson, LuJea (co-chairman);
Rolf Karlsson, Lund (co-chairman);
Andrzej Lingas, Lund;
Ola Petersson, Vii.xjéi.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

List of Referees

Abrahamson K. FülôpZ. LazardD. Sales T.
AlurR. Gabarr6J. LeducG. SalomaaA.
AndersonR. GalloG. LeroyX. SannellaD.
Andersson A. GarridoO. Levcopoulos C. SassoneV.
AnsteeR.P. GavaldâR. Liestman A. SchieberB.
Arnborg S. Giacobazzi R. LuccioF. Schmid U.
Arnold A. Godefroid P. MaggsB.M. Schmidt E.M.
BaazM. GoldmannM. Magnusson B. SééboldP.
Balcâzar JL Goldreich O. Manorioci D. Seibert S.
Bang-Jensen J. Goltz U. Manovssakis Y. Seidl H.
BarthaM. GraedelE. Martini S. SemaM.
Beauquier D. GrandjeanR Masini A. SkyumS.
BennanP. Grosse-Rhode M. Matias Y. StaigerL.
BemotG. HabeIA. Mattsson C. Steffen B.
BerryG. HajnalP. MiioT. Steinby M.
BestE. Hankin CL Miitersen P.B. Stevenne J.-M.
Bhattacharia B. HansenM.R. MoggiE. Steyaert J.-M.
BoassonL. HighamL. Montanari U. Stirling C.
Bodlaender H.L. Hodkinson I.M. MoreauL. Storlind R.
Bonatti P. HonkalaJ. Moscowitz Y. StoutQ.
Breazu-Tannen V. Hortmann M. Mossakowski T. Taylor Paul
Carlsson S. HorvâthG. Nagarajan R. TeIG.
CasasR. Inverardi P. Nick! F. Thurimella R.
Cassaigne J. JaJa J. NiemiV. Tison
ChoffrutC. Jancar P. Niisson B. Torân J.
Comon JantzenM. Niisson S. TreinenR.
ComptonK. Jebelean T. Olderog E.-R. Tsantilas T.
Courcelle B. JennerB. Pacholski L. Turân G.
Craig T.S. JenningsE. Padawitzp. UpfalE.
Crochemore N. Juras M. Paz A. ValkemaE.
Csakany B. KamedaT. Petersson O. Varricchio S.
Csirik J. Karhumilld J. Pin J.E. VianuV.
Culberson J. Karl J. Pippenger N. Vickers S.J.
Damgaard I.B. KariL. PlumpD. Wagner A.
Delorme Karlsson R. PoignéA. WeberA.
DessmarkA. KasifS. Potthoff A. WiehagenR.
Diaconescu Khuller S. Prodinger H. WiIkeT.
DiekertV. Klarlund N. QianZ. WiIlem J.
Dovier A. KlopJ.W. Rajasekaran S. WinskelG.
Drewes F. KlugeW. RamanR. Wojciechowski S.
DrosteM. KnoopJ. RazD. WooRyuK.
Emerson RA. KoubekV. RegnierM. YeshaY.
Engberg U.H. KrivânekM. RenvallA. YoungN.
Enjalbert P. KudlekM. Reynolds M.A. ZielonkaW.
Farvardin N. La Poutré J.A. Richter M.M.
Frandsen G. Lagergren J. Ruthing O.
FuchsN.E. LandauG.M. Sahinalp S.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

TABLE OF CONTENTS

Session 1: Programs and Data Structures

Program Result Checking: A New Approach to Making Programs More
Reliable (Invited)

M. Blum 1

Dynamic Interpolation Search in o(log log n) Time
A. Anderssan and C. Mattsson .. 15

Searching Among Intervals and Compact Routing Tables
G.N. Fredericksan ... 28

Session 2: Approximation Complexity

The Approximation of Maximum Subgraph Problems
C. Lund and M. Yannakakis .. 40

Polynomially Bounded Minimization Problems Which are Hard
to Approximate

V. Kann .. 52

Primai-Dual Approximation Aigorithms for Integral Flow and Multicut in
Trees, with Applications to Matching and Set Cover

N. Garg, V. V. Vazirani, and M. Yannakakis 64

The Complexity of Approximating PSPACE-Complete Problems
for Hierarchical Specifications

M. V. Marathe, H.B. Hunt III, and S.S. Ravi 76

Session 3: Graph Aigorithms

Problems on Pairs of Trees and the Four Colour Problem of Planar Graphs
A. Czumaj and A. Gibbons .. 88

Constructing Competitive Tours from Local Information
B. Kalyanasundaram and K.R. Pruhs 102

Treewidth and Pathwidth of Permutation Graphs
H. Bodlaender, T. Kloks, and D. Kratsch 114

A Theory of Even Functionals and Their Aigorithmic Applications
J. W. Jaromczyk and G. Swiqtek 126

Session 4: AlgorithID Analysis and Computational Geometry

Exact Asymptotics of Divide-and-Conquer Recurrences
P. Flajalet and M. Golin ... 137

Optimal Bounds for the Change-Making Problem
D. Kozen and S. Zaks .. 150

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

The Complexity of N-body Simulation
J.H. Reif and S.R. Tate 162

A Simple Method for Resolving Degeneracies in Delaunay Triangulations
M.B. Dillencourl and W.D. Smith 177

Session 5: Complexity

Fault-Tolerance and Complexity (Invited)
L.A. Hemachandra ... 189

Reversal-Space Trade-offs for Simultaneous Resource-Bounded
Nondeterministic Thring Machines

H. Yamamoto .. 203

On the Computational Power of Discrete Hopfield Nets
P. Orponen .. 215

Session 6: Probabilistic Complexity and Cryptography

On Randomized Versus Deterministic Computation
M. K arpinski and R. Verbeek ... 227

Lower Bounds for One-Way Probabilistic Communication Complexity
F. Ablayev ... 241

Maintaining Discrete Probability Distributions Optimally
T. Hagerup, K. Mehlhorn, and J. Munro 253

Secure and Efficient Off-Line Digital Money
M. Franklin and M. Yung ;...................................... 265

Session 7: Computability, FormaI Languages and Automata

Computational Depth and Reducibility
D. W. Juedes, J.!. Lathrop, and J.H. Luiz 277

Learnability: Admissible, Co-Finite, and Hypersimple Languages
G. Baliga and J. Case ... 289

Inclusion is Undecidable for Pattern Languages
T. Jiang, A. Sa/omaa, K. Salomaa, and S. Yu

New Decidability Results Concerning Two-Way Counter Machines
and Applications

301

O.H. Ibarra, T. Jiang, N. TI-an, and H. Wang 313

Session 8: Logic, FormaI Languages and Automata

Cobham's Theorem Seen Through Büchi's Theorem
C. Michaux and R. Villemaire 325

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

Logical Definability on Infinite Traces
W. Ebinger and A. Muscholl ... 335

Algebras for Classifying Regular Tree Languages and an Application
to Frontier Testability

T. Wilke ... 347

Finite Automata as Characterizations of Minor Closed Tree Families
A. Gupta .. 359

Session 9: Parallel and Disributed Algorithms 1

On Distributed Aigorithms in a Broadcast Domain (Invited)
D. Dolev and D. Malki ... 371

Sparse Networks Supporting Efficient Reliable Broadcasting
B.S. Chlebus, K. Diks, and A. Pele 388

Session 10: Parallel and Disributed Algorithms II

Strongly Adaptive Token Distribution
F. Meyer au! der Heide, B. OesterdiekhoJJ, and R. Wanka

Fast Parallel Computation of Characteristic Polynomials by Leverrier's
Power Sum Method Adapted to Fields of Finite Characteristic

398

A. Schiinhage .. 410

Fast Parallel Constraint Satisfaction
L.M. Kirousis .. 418

Session Il: Algebraic Aspects of Formal Languages and Automata 1

The Product of Rational Languages (Invited)
J. Simon ... 430

On Regular Compatibility of Semi-Commutations
E. Ochmanski and P.-A. Wacrenier 445

Algebraic Aspects of B-Regular Series
P. Dumas 457

Session 12: Algebraic Aspects of Formal Languages and Automata II

Products of Finite State Machines with Full Coverage
D.M. Cohen and M.L. Fredman 469

An Effective Version of Stallings' Theorem in the Case
of Context-Free Groups

G. Sénizergues ... 478

On the Power of Periodic Iteration of Morphisms
A. Lepistii ... 496

If a DOL Language is k-Power Free then It is Circular
F. Mignosi and P. Séébold ... 507

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

Session 13: Concurrency

Deciding 'Thue Concurrency Equivalences on Finite Safe Nets
L. Jategaonkar and A.R. Meyer...... 519

Timed Testing of Concurrent Systems
W. Vogler ... 532

The Fork Calculus
K. Have/und and K. G. Larsen 544

Extended 'Thansition Systems for Parametric Bisimulation
P. lnverardi, C. Priami, and D. Yankelevich 558

Session 14: Temporal Logic

Temporal Logic and Categories of Petri Nets
C. Brown and D. Gurr ... 570

Deddability of a Partial Order Based Temporal Logic
K. Lodaya, R. Ramanujam, and P.S. Thiagarajan

Local Model Checking for Context-Free Pro cesses

582

H. Hungar and B. Steffen , 593

Session 15: Theory of Programming 1

Computing on Structures (Invited)
S. Abiteboul and V. Vianu .. , , 606

A Partial Solution for D-Unification Based on a Reduction
to ACI-Unification

E. Con/ejean , , " , .. , "... 621

Efficient Ana!ysis of Concurrent Constraint Logic Programs
M. Codish, M. Falaschi, K. Marriott, and W. Winsborough

Session 16: Theory of Programming II

A Confiuent Reduction for the Extensional Typed À-Calculus with Pairs,
SUffiS, Recursion and Terminal Object

633

R. Di Cosma and D. Kesner , , ... 645

Modularity of Termination and Confluence in Combinations of Rewrite
Systems with Àw

F. Barbanera and M. Fernandez ., ' . , ... , , .. , .. , ... , ... , , . , ... , 657

From Domains to Automata with Concurrency
F. Bracho and M. Droste , .. , .. , ... , , , ",.,. 669

What ls a Universal Higher-Order Programming Language?
R. Kanneganti and li. Cartwright , ... 682

Author Index , . , , .. , .. , , . ' . , .. , , ,. 696

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Program Result Checking:
A New Approach to Making Programs More Reliable

Manuel Blum1

Computer Science Division

University of California at Berkeley

94720

Abstract. Program result checking is concerned with designing programs to

check their wode. For example, after solving an equation for x, a result·checking
program would substitute x back into the equation to make sure that the answer
obtained is correct. There are many ways to check results, but there has been no
theory to say what constitutes a good check. It is not a good check, for example,

to redo a computation without change a second time. Such recomputation may
uncover an intermittent hardware fault, but it will not uncover a software fault,

and the discovery and elimination of software faults is the principal goal of this

work. This talk discusses the concept of result checking, gives several examples,
and outlines the basic theory.

1. Introduction
This talk restricts attention to program result checkers for a certain clean class

of computational problems. These problems are completely described by specifying
what constitutes correct input/output and acceptable running time, ie. by describing
1. what is an allowable input (to any program for the problem),
2. for each such input, what is an acceptable (ie. correct) output, and
3. what is an (easily computable) upper bound on the running time of a (reasonably
fast) program for the problem.

For each (such) computational problem lt, discussion will center on two classes
of programs. The first will be a (possibly faulty) program for solving problem lt. The
second will be a (possibly faulty) checker for lt. The latter result checker for compu
tational problem 1t is an efficient program for checking the correctness of any given
program (supposedly) for problem 1t on any particular input to the program. Notice
that a checker does not check that the given program for 1t is correct on ail inputs, but
only that it is correct on the given input. This is one reason why it is generally easier
to check a program (on a given input) than it is to verify a program (prove the pro
gram correct on all inputs).

This work was supported in part by NSF grant CCR92.()1092, in part by IBM Rescarch Division, TJ.
Watson Research Center, and in part by !CSI, the International Computer Science InstilUte, Berkeley,
CA.
A preliminary version of this paper appeared in Blum and Raghavan [BR).
Author's e·mailaddress: blum@cs.berkeley.edu

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

More precisely, a result checker for problem 11: is an algorithm that is supplied
with:
1. a (possibly faulty) program for solving computational problem 11:, given as a black
box, which the checker may run on inputs of its choice; and
2. a particular input for this program.
The checker must determine either thal the output is correct or the program is faulty.
(It may he that both are !rue!) To this end. the checker is designed ID do efficient
computations that are permitted ID include calling the given program on various
allowable inputs of the checkers own choosing. If the checker outputs CORRECT,
then this implies that the checker has verified that the output of the given program on
the given input is correct; if it outputs FAUL TY, then this implies that the checker
has verified the existence of a fault in the given program. The latter fault may mani
fest itself when the program is run on an input different from the given input.

Notice above that when a faulty program gives a correct output despite its fault,
the checker is permitted to output either CORRECT or FAULTY. In particular, the
checker is permitted to output FAUI .. TY even when the given program outputs a
correct answer on the given input, provided the program is indeed faulty~ While this
may al fus! appear Sirange, it is exactly what is wanted: for example, a trivial program
that gives the same answer on aU inputs may he perfectly correct on the given input
for no good reason! The checker that discovers the program is junk has good reason
to declare il faulty.

2. Program Result Checkers
Let lt denote a (cornputational) decision and/or search problem. For x an input

to 11:, let 1I:(x) denote the output of n. Let P he a program (supposedly for n) that halts
on all instances of n. We say that sueh a program P, viewed as a program for 11:, has a
fouit (or bug) if for sorne instance x of 7t, P (x) -# n:(x).

Deline an (efficient) program result checker C" for problem 11: as follows:
C~ (1 ;k) is any probabilistic (expected-poly-tirne) oracle Turing machine that satislies
the following conditions, for any program P (supposedly for n) that halts on all
instances of l'C, for any instance 1 of n, and for any positive integer k (the so-called
«security parameter") presented in unary:

1. If P has no bugs, i.e., P (x) = 7t(x) for all instances x of 7t, then with
probability2 ;:>: 1 - 2--k, C~ (l;k) = CORRECT (Le., P(!) iscorrect).

2. If P (l) -# n(f), then wiÙl probability2 ;:>: 1 - 2--k, C~ (l;k) = BUGGY (i.e.,
P has a fault).

In the above, it is assumed that any program P for problem lt halts on al!
instances oÏ n. This is done in order ta help fceus on the problem at hand. In gen
eral, however, programs do not always hait, and the definition of a "bug" must he

2 TItis probability i, compute<! over the ,ample 'pace of ail finite sequences of coin m"" that C could
bave tos,ed. In mest examples. including all tho.e in !hi, paper. program P definitely (rather than prob
ably) ha,. bug when C~ (1 ;k) = BUGGY.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

