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FOREWORD

The International Colloquium on Automata, Languages and Programming (ICALP)
1s an annual conference series sponsored by the European Association for Theoreti-
cal Computer Science (EATCS). It is intended to cover all important areaa of theo-
retical computer science, such as: compntability, automata, formal languages, term
rewriting, analysis of algorithms, computational geometry, computational complexity,
symbolic and algebraic computation, cryptography, data types and data structures,
thecry of data bases and knowledge bases, semantics of programming languages,
program specification, transformation and verification, foundations of logic program-
ming, theory of logical design and layout, parallel and distributed computation, the-
ory of concurrency, and theory of robotics.

ICALP 93 was held at Lund University, Sweden, from July 5 to July 9, 1993,

Previous colloquia were held in Wien (1992), Madrid (1991), Warwick (1890),
Stresa (1989), Tampere (1988), Karlsruhe (1987), Rennes (1988), Nafplion (1985},
Antwerp (1884), Barcelona (1983), Aarhus (1882), Haifa (1981}, Amsterdam (19808),
Graz (1879}, Udine (1978}, Turku (1977}, Edinburgh {1976), Saarbriicken (1974) and
Paris (1972). ICALP 94 will be held in Jerusalem from July 11 to July 15, 1994.

The number of papers submitted was 151. Each submitted paper was sent to at
least four Programme Comumitice members, who were often assisted by their referees.
The Programme Committee meeting took place at Lund University on the 5th and
6th of February 1993 (the names of those participating in the meeting are underlined
below). This volume contains the 51 papers sclected at the meeting plus the five
invited papers.

We would like to thank all the Programme Committee members and the referees
who assisted them in their wark. The list of referees is as complete as we can achieve
and we apologize for any omissions or errors.

The members of the Organizing Committee, the membess of the algorithm group
at our department sometimes assisted by their families, our departmental secretaries,
and many other members of the department deserve cur gratitude for their contri-
butions throughout the preparations.

We also gratefully acknowledge support {rom Swedish Natural Science Research
Council, Apple Computer AB, the Department of Computer Science at Lund Uni-
versity, Lund Institute of Technology, Lund University, and the city of Lund.

Svante Carlsson, Rolf Karlsson, and Andrzej Lingas
April 1998, Lund Universily
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Program Resuit Checking: .
A New Approach to Making Programs More Reliable

Manuel Blum*

Computer Science Division
University of California at Berkeley
94720

Abstract. Program result checking is concerned with designing programs to
check their work. For example, after solving an equation for x, a result-checking
program would substitute x back into the equation to make sure that the answer
obtained is comrect. There are many ways to check resulis, but there has been no
theory to say what constitutes a good check. It is not a good check, for example,
to redo a computation without change a second time. Such recomputation may
uncover an intermillent hardware fault, but it will not uncover a software fault,
and the discovery and elimination of software faulis is the principal goal of this
work. This walk discusses the concepl of result checking, gives several examples,
and outlines the basic theory.

1. Introduction

This talk restricts attention to program result checkers for a certain clean clasg
of computational problems. These problems are compleiely described by specifying
what constitutes correct inputfoutput and acceptable running time, ic. by describing
1. what is an allowable input (io any program for the problem),

2. for cach such input, what is an acceptable (ic. correct) ouiput, and
3. what is an (easily computable} upper bound on the mnning time of a {reasonably
fast) program for the problem,

For each (such} computational problem =, discussion will center on (wo classes
of programs, The first will be a (possibly fanlty) program for solving problem &, The
second will be a (possibly faulty) checker for x. The latter resuit checker for compu-
tational problem = is an efficient program for checking the comeciness of any given
program (supposedly) for problem = on any particular input to the program. Notice
that a checker does not check that the given program for 1t is correct on all inpats, but
only that it is correct on the given input. This is one reason why it is generally easier
1o check a program (on a giver input} than it is to verify a program (prove the pro-
gram correct on all inputs}.

b s work was supported in part by NSF gramt CCRIZ-01092, in parnt by TBM Research Davision, TJ.
Watson Research Center, and in parnt by 1CSI, the International Computer Science Institute, Berkeley,
CA.

A preliminary version of this paper appeared in Blom and Raghavan [BR].
Author’s e-mail address: blum@cs.berkeley.eda
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More precisely, a resuit checker for problem 7 is an algorithm that is supplied
with: :
1. a (possibly faulty) program for solving computational problem %, given as a black
box, which the checker may run on inputs of its choice; and

2. a particular input for this program.

The checker must determine cither that the ouiput is correct or the program is faulty,
(It may be that both are tmel) To this end, the checker is designed t¢ do efficient
computations that are penmitted to include calling the given program on various
allowable inpuis of the checkers own choosing. If the checker outputs CORRECT,
then this implics that the checker has verified that the output of the given program on
the given input is correct; if it outputs FAULTY, then this implies that the checker
has verified the existence of a fault ir the given program. The latter fault may mani-
fest itself when the program 1§ run on an input different from the given jnput,

Notice above that when a faulty program gives a correct cutput despite its fanlt,
the checker is permitted 1o ocutput either CORRECT or FAULTY, In pariicular, the
checker is permitied to output FAULTY even when the given program outputs a
correci answer on the given input, previded the program is indeed faulty. While this
may ai first appear strange, it is exactly what is wanted: for example, a trivial programn
that gives the same answer on all inputs may be perfectly cosrect on the given input
for no good reason! The checker that discovers the program is junk has good reason
to declare it faulty.

2. Program Resuit Checkers

Let m denote a (computational} decision and/or search problem. For x an inpui
1w 7, let =(x) denoie the cutput of 1. Let P be a program (supposadiy for 7t that halis
on all instances of . We say that such a program P, viewed gs a program for %, has a
Sfault (or bug) if for some instance x of &, P{x) = n(x),

Define an (efficient} program resuit checker €, for problem #n as follows:
€% { ;&) is any probabilistic {expected-poly-time) oracle Turing machine ihat saiisfies
the following conditions, for any program P (supposedly for =) that halis on all
instances of #, for any instance ! of m, and for any positive integer & {the so-called
““security parameier’’) presented in unary:

I.  If P has no bugs, ie., £{&)=n(x) for all instances x of £, then with
probabitity” > 1 - 27%, CF (7:k) = CORRECT (i.e., P(I) is correct).

2. U P{I)#ad), then with probability? > 1 — 2%, CZ (k) = BUGGY (ie.,
P has a fault).

Ir the above, it is assumed that any program P for problem r halts on all

instances of w. This is done in order to heip focus on the problem at hand. In gen-
eral, however, programs do not always halt, and the definition of a “*bug’™ must be

2 This prohability is comiputed over the sample space of all finite sequences of coin flips that € could
have 1odsed. In most examples, including ali those in this paper, program F definitely {rather than preb-
sbly) has 3 bug when CF (k) = BUGGY.






