BIBLIOTHEQUE DU CERIST

J.W. de Bakker W-P de Roever
G. Rozenberg (Eds.)

Semantics:
Foundations and
Applications

REX Workshop
Beekbergen, The Netherlands, June 1-4, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcclona
Budapest

BIBLIOTHEQUE DU CERIST

Series Ediors

Gerhard Goos Juris Harimanis

Universitdt Karlsruhe Comell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessniiz-Strafie t 4130 Upson Hall

W-7500 Karlsruhe, FRG Ithaca, NY 14833, USA

Volume Editors

1. W, de Bakker
Cenire for Mathematics and Computer Science
P. O, Box 4079, 1009 AB Amsterdam, The Netheriands

W.-P. de Roever
Instituie of Computer Science and Pracrical Matbemartics 11
Christian-Albrechis-Universitin zu Kiel, PreullerstraBe 1-9. W-2300 Kicl, FRG

G. Rozenbery
Department of Computer Science, Leiden University
P Q. Box 9512, 2300 RA L ciden, The Netherlands

CR Subject Classification (19913 ¥.3, D.1-3 .
2074

ISBN 3-340-56396-3 Springer-Veriag Beriin Heidelberg New York
ISBN 0-387-56596-5 Springer-Verlag New York Berlin Heidelberg

This work is sabject to copyright. All rights are reserved, whether the whole or pant

of the materia! is concerned. specifically the rights of translation, reprinting, re-use
of illustrations. recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Dupiication of this publication oy parts thereof is
oermitted only under the provisions of the German Copyright Law of Scptember 9,
1965, in 1ty current version, and permission for use must always be obained from
Springer-Verlag. Violations arc hable for prosccution under the German Copyright
Law.

€ Springer-Verlag Berlin Heidelbery 1993
Printed in Germany

Typesetting: Camera ready by author/editor
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

The aim of the workshop on 'Semantics - Foundations and Applications’ was to
bring together researchers working on the semantics of programming languages.
Faithfully reflecting the rich variety in prescnt-day scmantic research, the program
of the workshop included presentations on a wide range of topics situated in the two
areas:

Foundations
= comparative domain theory, category theory, information systems,

Applications
. concurrency - process algebras, asynchronous communication, trace nets,
action semantics, process refinement, concurrent constraint programming,
. predicaie transformers, refinement, weakest preconditions,
« comparative semantics of programming concepts, full abstraction,
» reasoning about programs - total correciness, episternic logie,
+ logic programming,
+ functional programming - sequentiality, integration with concurrency,
» applied structured operattonal semantics,
and scveral others.

The present volume is based on this meeting which the editors erganized June 1-4,
1992, in Conference Centre De Wipselberg, Beekbergen, The Netherlands, The
workshop was an activity of the project REX - Research and Education in
Concurrent Systems, one of the projects sponsored by the Netherlands NF]
(Nationale Faciliteit Informatica) Programme. A short description of the REX
project is given below.

The material presented in this volume was prepared by the lecturers (and their
coauthors) after the meeting took place - in this way the papers also reflect the
discussions that teok place during the workshop. The editors moreover invited a
few authors to contribute papers not based on work presented during the meeting.
We were fortunate to enjoy the cooperation of such an excellent group of lecturers
and further participants. We are grateful to all of them for contributing to the
success of the event. Special thanks go to Jan Rutten for his help in preparing the
scientific program of the workshop.

We gratefully acknowledge the financial support for the workshop from the
NEI programine.

The CWI, Amsterdam, was responsible for the technical organtzation of the
mecting. The local organization was in the capable hands of Micke Bruné and
Frang Snijders,

BIBLIOTHEQUE DU CERIST

¥l

The REX project

The REX - Research and Hdueation in Concurrent Systems - project investigates
syntactic, semantic ang proof-theoretic aspects of concurrency. In addition, its
objectives are the sducation of young researchers and, in general, the dissemination
of scientific results relating to these themes. REX is a collaborative effort of Leiden
University (G. Rozenberg), the CWI in Amsterdam (J.W. de Bakker), and the
Eindhoven University of Technology (W.P. de Roever), representing the areas of
syntax, semantics and proof theory, respectively. The project is supported by the
Netherlands National Facility for Informatics {NFT}; its duragion is approximately
six years starting in 1988. The educational activities of REX include reguiar
"concurrency days”, consisting of tutorial infroductions, presentations of research
results, and lecture series of visiting professars. The research aciivities of the REX
project inchude, more specifically:

a} Three subprojects devoted to the themes: syntax of concurrent systems;
comparative semantics, metric transition systerms and domain theory; and
high-level specification and refinement of real-time distributed systems,

by Coilaboration with visiting professors and post-doctoral researchers,

c) Workshops and Schools. Ainting at a broad coverage of major themes in, or
relating to, concurrency, REX has organized the following events:

1988 Linear Time, Branching Time and Pastial Ocder in Logics and Models for
Concurrency
Proceedings published as Springer Lecture Notes in Computer Science
354

1989 Stepwise Refinement of Distributed Systems - Modsls, Formalisms,
Correcmess
LNCS 430

1990 Foundations of Object-Oriented Languages
LNCS 489

1991 Real-Time: Theory in Practice
LNCS 600

1992 Semantics: Poundations and Applications
These Proceedings.

The project closes in 1993 with the School/Symposium "A Decade of Concurrency
- Reflections and Perspectives”, where the accomplishments in the field of
concurrency will be surveyed and a look into the future will be attempted as
{unjexpected developments.

February 1993 LW, de Bakker
W.P. de Rogver
G. Rozenberg

BIBLIOTHEQUE DU CERIST

Wit

Table of Contents

R.J.R. Back, J. von Wright
Predicate Transformers and HigherOrder Logie oo oo i

E. Badoue!, P. Darcndeau
TraCe NS . . e e e e e 21

R. Berghammer, B. Elbl, U. Schmer
Proving Total Correctness of Programs in Weak Second-Order Logie 51

F.5. de Boar, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten
On Blocks: Locaiity and Asynchronous Communicationo e 73

M. Bonsangus, ..N. Kok
Semantics, Orderings and Recursion in the Weakest Precondition Caleuivs g1

A. Corradini, A. Asperti
A Categorical Model for Logic Programs: Jndexed Monoidal Categories itD

P. Degano, R. Gorrier, G. Rasolint
A Categorical View of Process Refinement i e 138

A_Edalat, MB. Smyth
Compact Metric Information Systems o e e e 154

A Eligns, EP. de Vink
Asynchronous Rendez-Vous In Distributed Logic Programming 174

M. Gabbrielli, G. Levi, M. Martelli
New Semantic Tools for Logic Programming oo ottt e 204

W.H. Hesselink, R. Reinds
Temporal Preconditions of Recursive Procedures 236

W. van der Hoek, M. van Hufst, J.-J.Ch. Meyar
Towards an Epistemic Approach to Reasoning about Concurrent Programs _. .. 261

E. Horlta
A Fully Abstract Model for a Nonuniform Concurrent Language with Parameterization
and Localily, o e e et e 288

BIBLIOTHEQUE DU CERIST

Wik

R, Kanneganti, R. Cartwrigtt, M. Felleisen
SPCF: its Model, Calcutus, and Computational Fower oL

M, Kwiathowska
infinite Behaviour and Fairness in Concurrent Constraing Programming

M. W, Misiove, F.J, Oles

Full Abstraction and Unnested Becursion L e !

P.C. Mosses
On the Action Semantics of Concurrent Programming Languages

= Mielsan, H.R. Mielson
vayered Predicales e e s

P. Panangaden, V. Saraswat, P..J. Scok, RA.G. Sedy
A Hyperdoctrinal View of Concurrent Congiraint Programming

J.ui MM, Ruftes, D. Turi
On the Foundations of Final Semantics: Non-Standard Sets, Matric Spaces, Partial Orders

V. Stoltenberg-Hansen, J.V, Tucker
Infinite Systerms of Equations over Inverse Limits and Infinite Synchronous Concurrent

B. Thomsen, L. Leth, A, Giacalone
Saorme Issues in the Semantics of Faciie Distributed Programming

R.T. Udink, J.N. Kok
Ori the Relation Between Unity Properties and Sequences of States

F.W. Vaardirager
Expressiveness Results for Process Algebras i i

&. Weber, B. Bioom, G. Brown
Compiling Joy Into Silicon: An Exercise in Applied Structural Operationial Semaniics

. 477

BIBLIOTHEQUE DU CERIST

Predicate Transformers and Higher Order Logic

R.J.R. Back
Abo Akademi University, Department of Computer Seience
Lemminkiinengatan 14, SF-20520 Abo, Finland

J. von Wright
Swedish Schoal of Economics and Business Education
Biblinteksgatan 16, SF-6510¢ Vasa, Finland

ABSTRACT Predicate transformers are formalized in higher order logic. This gives a basis for
mechanized reasoning about total vorrectness and refineinent of programs. The nolions of program
vatiables and logical variables are explicaled in the formalization. We show how Lo describe common
program construcls, such as assigiinent slatements, sequentiad and conditional composition, itera-
tion, recursion, blocks and procedures with parameters, are described as predicale transformers in
this framework. We also deseribe some specification oriented constructs, such as assert statemcnts,
puards and nondeterministic assipminents. The monotonicily of these constructs over the lattice of
predicates is proved, as well as the mouotonicity of the statement constructors with respect to the
refinenent ordering on predicate translormers.

Key words Stepwise refinement, weakest preconditions, total correckness, predicate transform-
ers, higher order logic, HOL, semantics of programming languages, state spaces, nondeterminism,
procedures

CONTENTS

1. Introduction
2. Higher order logic

3. Basic domains
» Slate space
= Predicates
« Manipulating state predivates
» Predicate lattice
» State transformers and state relations
» Predicate transformers
4. Statements as predicate transformers
= Assignment statcments
» Sequential and conditional compasition
o Decmonic and angelie nondeterminism
* Completeness

BIBLIOTHEQUE DU CERIST

3. Darived consuruets

e Conditional consbrucis

» Nendeterministic assignments
= Hlocks and loeal variables

= Recursion and iteration

= A notation for procedures

Procedures wikth parameters

6. Monotoaicity
s Preliminary defuitions
s Monotonicity of statements
s Monotonicity of derived constructs

7. Conclusions

1 Introduction

1. Statemenis of a programming laiguage can be given a seinaubics by associating every siatement
with a predicate transformer, Le., a function wmapping predicates to predieates. The weakest precon-
dition semantics associates a statemenit with a predicate trapsformer with the [oliowing property:
aach posteondition is mapped Lo the weakest piecondition that guarantees that the cxeeution of the
statement will terminate in a finel state that satisfics We posicondition, This semantic interprela-
tion of statements is uselul for reasoning aboutl total correcluess and refinement of progrars and
specifications [5, 1.

The proofs used in such reasoning arc usually semi-fornml, done in the iraditlon of classical
mashemnatics. This proof method generally works well, but there are siluations when s higher level
of formality i= desirable. For example, reasoning about blocks with loesl variables is often done
without an exact definition of the status of ihe local variables.

In this paper we show how reasouing in the weakest precondition framework can be given a
solid lapical foundation by using higher order logic {simple type theory) as a basie. We deseribe
a programming notation that covers hasic programming constructs, as well as blocks with local
variables, recursion and procedures with paramelers. Statements are predicate transformers, defined
as terms of higher order logic. This formalization captures the weakest precondition semantics of the
corresponding traditional programming notations. '

An important property of statemenis in the weakest precondition caleitlus is monotonicity. Ail
reggonable statements of o programming notation should denote inonotonic predicele Lransformers.
Statement constructors should also e monotonic with tespect o the refinement relation oo state-
mcends [1}. We prove that all tlie statement constructors introduoed here have both these monotonicity
propearbies.

2, One of our main motivations for this work is the desire to mechanizc reasoning ebout programs,
using » theorem prover based on simple type theory. One such prover is HOL [6], and we have
admittedly been inspired by the OL logic when we developed this theory. Our zim s to overcome
some of the preblems encountered in formaalizing the theory of inperative languages using theorern
vrovers [7, 6, 4}, :

The formalization of predicate transformers and refinement calculus as described here has in fact
beer. implementad in HOL as a mechanized theory. The monatonicity results stated here have also
all been construcied and checked in HOL.

3, The paper is vrganized as follows. In the next scction, we give a very brief overview of higher order
logic. In Section 3 we describe the basic ideas underlying our formalization of predicate transformers.
Section 4 shows how to define basic program statements within this Famewerk. Seclion & introduces

BIBLIOTHEQUE DU CERIST

some additional constructs, that are found useful in practice, and which can be defined in terms of the
basic constructs. Section 6 proves thal all the constructs introduced have the required monotoricity
propertics. Scetion 7 ends with a fow comments and remarks.

2 Higher ordcer logic

1. The logic assuined is & polymorphic higher order logic. We assurnc that there is a collection of
basic types. Every type o is interpreted as a set {alse denoted o). xamples of basic types are bool
{the booleans), num {the putural numbers) and int {the inlegers). We adopt the convention that
constants and Lype names ave writlen in typewriler font.

We use traditional symibols for Jogical connectives. The boolean truth values are denoted F
{falsity) and T {truth). The scope of binders (¥, 3 and A) extends as far to the right as possible.

From the basic types we can form new types by repeatedly applying type constructors we will
need only product types & x = and funclion lypes ¢ — +, defined as usual. For a given type o, the
predicate type @ is defined by

7 ¥ & — boot.

This typc is so common in our treatment that it is convenient to have it as an abbreviation.

2. The elements of T can also be Interpreted as sels, by identilying a set with ils characteristic
function. Thus p is identificd with the set

{slus}

Then we can writc e.g., @ for false and p U ¢ for p A g. We also have that v € p is equivalent
to pv. We will use the predicate and the set notation interchangeably, choosing whichever is more
convenicnt for the moment.

We also generalize the set notation in the following way: for arbitrary ¢ : v — Fand p: a — bool
the notation

{asls: ps}
{the set of all g5 where s ranges over all values such that ps holds) stands for the corresponding
characteristic function
As' Bs. pa A’ = g5)

3. In the HOL system, rigorous proofs are carried out within the framework of s sequent calculus.
In order to make proofs shorter, we uge an inforinal caleulational proof style in this paper. Howcver,
all procls are easily transformed into formal proofs.

Since the logic is higher-order, we permit quantification and lambda abstraction over arbitrary
types. Functions can have arpumcits of any type. New constants can be introduced by simple
definitions. When defining a function f we often write

fr ¥ E

rather than the equivalent f % Az, E. Note that i a definition such as (1}, all free variables of B
st occur free on the left band side also.

4. 'We permit type variables a, & and + inn types. A type variable can be instantiated lo any type
{even to a type containing Lype vatiables). Tlis means that we can define polymnorphic constonts.
An example of & polymorphic constant is infix equality, with type

= a — « — bodl

{the fact that a term ¢ has type ¢ is indicated by writing t : 7).

