
J. W de Bakker W-P. de Roever
G. Rozenberg (Eds.)

Semantics:
Foundations and
Applications
REX Workshop
Beekbergen, The Netherlands, June 1-4, 1992
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

\

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series EditoIs

Gerhard Goos
Universitiit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe l
W-7500 Karlsruhe, FRG

Volume Editors

J. W. de Bakker

luris Hartmanis
Comell University
Departrnent of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Centre for Mathematics and Computer Science
P. O. Box 4079, 1009 AB Amsterdam, The Netheriands

W.-P. de Roever
Institute of Computer Science and Practical Mathematics II
Christian-Albrechts-Universitiit zu Kiel, PreuBerstraBe 1-9, W-2300 Kiel, FRG

G. Rozenberg
Department of Computer Science, Leiden University
P. O. Box 9512, 2300 RA Leiden, The Netherlands

CR Subject Classification (1991): F.3, D.\-3

ISBN 3-540-56596-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56596-5 Springer-Verlag New York Berlin Heidelberg

This work is subject ta copyright. Al! rights are reserved, whether the who le or part
of the material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are hable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author/editor
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

The aim of the workshop on 'Semantics - Foundations and Applications' was to
bring together researchers working on the semantics of programming languages.
Faithfully reflecting the rich variety in present-day semantic research, the program
of the workshop included presentations on a wide range of topics situated in the two
areas:

Foundations
comparative domain theory, category theory, information systems,

Applications
concurrency - process algebras, asynchronous communication, trace nets,
action semantics, process refinement, concurrent constraint programming,
predicate transfoffilers, refinement, weakest preconditions,
comparative semantics of programming concepts, full abstraction,
reasoning about programs - total correctness, epistemic logic,
logic programming,
functional progranlffiing - sequentiality, integration with concurrency,
applied structured operational semantics,

and several others.

The present volume is based on this meeting which the editors organized June 1-4,
1992, in Conference Centre De Wipselberg, Beekbergen, The Netherlands. The
workshop was an activity of the project REX - Research and Education in
Concurrent Systems, one of the projects sponsored by the Netherlands NFI
(Nationale Faciliteit Informatica) Programme. A short description of the REX
project is given below.

The material presented in this volume was prepared by the lecturers (and their
coauthors) after the meeting lOok place - in this way the papers also reflect the
discussions that took place during the workshop. The editors moreover invited a
few authors to contribute papers not based on work presented during the meeting.
We were fortunate to enjoy the cooperation of such an excellent group of lecturers
and further participants. We are grateful to al! of them for contributing to the
success of the event. Special thanks go to Jan Rutten for his help in preparing the
scientific program of the workshop.

We gratefully acknowledge the financial support for the workshop from the
NFI programme.

111e CWI, Amsterdam, was responsible for the technical organization of the
meeting. ll1e local organization was in the capable hands of Mieke Bruné and
Frans Snijders.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

The REX project

The REX - Research and Education in Concurrent Systems - project investigates
syntactic, semantic and proof-theoretic aspects of concurrency. In addition, its
objectives are the education of young researchers and, in general, the dissemination
of scientific results relating to these themes. REX is a collaborative effort of Leiden
University (G. Rozenberg), the CWI in Amsterdam (J.W. de Bakker), and the
Eindhoven University of Technology (W.P. de Roever), representing the areas of
syntax, semantics and proof theory, respectively. The project is supported by the
Netherlands National Facility for Informatics (NFI); its duration is approximately
six years starting in 1988. The educational activities of REX indude regular
"concurrency days", consisting of tutorial introductions, presentations of research
results, and lecture series of visiting professors. The research activities of the REX
project include, more specifically:

a) Three subprojects devoted to the themes: syntax of concurrent systems;
comparative semantics, metric transition systems and domain theory; and
high-Ievel specification and refinement of real-time distributed systems.

b) Collaboration with visiting professors and post-doctoral researchers.
c) Workshops and Schools. Aiming at a broad coverage of major themes in, or

relating to, concurrency, REX has organized the following events:

1988 Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency
Proceedings published as Springer Lecture Notes in Computer Science
354

1989 Stepwise Refinement of Distributed Systems - Models, Formalisms,
Correctness
LNCS430

1990 Foundations of Object-Oriented Languages
LNCS489

1991 Real-Time: Theory in Practice
LNCS 600

1992 Semantics: Foundations and Applications
These Proceedings.

The project closes in 1993 with the School/Symposium "A Decade of Concurrency
- Reflections and Perspectives", where the accomplishments in the field of
concurrency will be surveyed and a look into the future will be attempted as to
(un)expected developments.

February 1993 J.W. de Bmer
W.P. de Roever
G. Rozenberg

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

Table of Contents

R.J.R. Back, J. von Wright

Predicate Transformers and Higher Order Logic

E. Badouel, P. Darondeau

Trace Nets ... 21

R. Berghammer, B. Elbl, U. Schmerl

Proving Total Correctness of Programs in Weak Second-Order Logic 51

F.S. de Boer, J.N. KOk, C. Palamidessi, J.J.M.M. Rutten

On Blocks: Locality and Asynchronous Communication 73

M. Bonsangue, J.N. Kok

Semantics, Orderings and Recursion in the Weakest Precondition Calculus 91

A. Corradini, A. Asperti

A Categorical Model for Logic Programs: Indexed Monoidal Categories 110

P. Degano, R. Gorrieri, G. Rosalini

A Categorical View of Process Refinement . 138

A. Edalat, M.B. Smyth

Compact Metric Information Systems .. 154

A. Eliëns, E.P. de Vink

Asynchronous Rendez-Vous in Distributed Loglc Programming 174

M. Gabbrielli, G. Levi, M. Martelli

New Semantic Toois for Logic Programming 204

W.H. Hesselink, R. Reinds

Temporal Preconditions of Recursive Procedures 236

W. van der Hoek, M. van Hulst, J.-J.Ch. Meyer

Towards an Epistemie Approach to Reasoning about Concurrent Programs 261

E.Horita

A Fully Abstract Model for a Nonuniform Concurrent Language with Parameterization

and Locality . 288

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

fi. Kanneganli, R, Cartwright, M. Felleisen

SPCF: Ils Model, Calcul us, and Computational Power 318

M. Kwiatkowska

Inflntte Behaviour and Faimess in Concurrent Constraint Programming 348

M. W. Mislove, F.J. Oies

Full Abstraction and Unnested Recursion 384

l'.D. Mosses

On the Action Semantics 01 Concurrent Programming Languages 398

F. Nielsan, H.R. Nielson

Layered Predicates .. 425

P. Panangaden, V. Saraswat, P.J. Scott, R.A.G. Seely

A Hyperdoctrinal View of Concurrent Constraint Programming 457

J.J.M.M. Rutten, D. Turi

On the Foundations of Final Semant;cs: Non-Standard Sets, Metric Spa ces, Partial Orders . 477

V. Stol!enberg-Hansen, J.V. Tucker

Infinite Systems of Equations over Inverse Limits and Infinite Synchronous Concurrent

Aigortthms 531

B. Thomsen, L Leth, A. Giacalone

Sorne Issues in the Semantics of Facile Distributed Programming 563

R.T. Udlnk, J.N. Kok

On the Relation Between Untty Properties and Sequences of States 594

F.w. Vaandrager

Expressiveness Results for Procass Aigebras 609

S. Weber, B. Bloom, G. Brown

Compiling Joy Into Silicon: An Exercise in Applied Siructurai Operational Semantics 639

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Predicate Transformers and Higher Order Logic

R.J.R. Back
Abo Akademi University, Department of Computer Science

Lemminkii.inengatan 14, SF-20520 Abo, Finland

J. von Wright
Swedish School of Economies and Business Education

Biblioteksgatan 16, SF-65100 Vasa, Finland

ABSTRACT Predicate transfonners are formalized in higher order logie. This gives a basis for
mechanized reasoning ,about total correctllcss and refinement of programs. The notions of program
variables and logical variables are explicated in the formalization. We show how ta describe common
program constructs, sueh as assignment statemcllts, sequential and conditional composition, itera­
tion, recursion, blacks and procedures with parameters, are described as predicate transformers in
this framework. We also describe some specification oriented constructs, such as assert statements,
guards and llolldetermillisUc assigllmellts. The monotonicity of these constructs over the lattice of
prerucates is proved, as weIl as the l11onotonicity of the statement constructors with respect to the
refinement ordering on predicate transformers.

Key words Stepwise refinement, weakest preconditions, total correctness, predicate transform­
ers, higher order logic, HOL, semantics of programming languages, state spaces, nondeterminism,
procedures

CONTENTS
1. Introduction

2. Higher order logic

3. Basic domains
• State space
• Predicates
• Manipulating state predicates
• Predicate lattice
• State transfonners and state relations
• Predicate transformers

4. Statements as predicate transfonners
• Assignment statements
• Sequential and conditional composition
• Demonic and angelic llondetermillism
• Completeness

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5. Derived constructs
@ Conditional constructs
$ NondeterminisLic assigmnents
• Blacks and local variables
@ Recursion and Iteration
(;, A notation for procedures
ri) Procedures with parameters

6. Monotonicity
• Preliminary defillitions
a ~vionotollicity of statements
$ Monotonicity of derived constructs

7. Conclusions

1 Introduction

2

1. Statements of a prograrrùning language cail be given a semantics by associating every statement
with a predîcate transformer, Le., a function mapping predicates ta predicates. The weakest precon­
dition semantics associates a statement with a predicate transformer with the following property:
each postcondition is mapped ta the weakest precondition that gnarantees that the execution of the
statement will terrninate in a final state that satisfies the postcondition. This semantic interpreta­
tion of statements is useful for reasoning about. total correctness and refinement of programs and
specifications [5, 1 J.

The proofs used in such reasoning are usually semi-formal, done in the tradition of classical
matheroatics. This proof method gener,Jly works well, but there are situations when a higher level
of formality is desirable. For example, reasoning about blocks with local variables is often done
without an exact definition of the status of the local variables.

In thls paper we show how reasoning in the weakest precondition framework cau be given a
solid logical foundation by using higher order logic (simple type theory) as a basis. We doscribe
a programming notation that covers basic programming constructs, as weH as blacks with local
variables, recursion and procedures with parameters. Statements are predicate transfonners, defined
as terms of higher arder logic. This formaliz«tion captures the weakest precondition semantics of the
corresponding traditional progr~ming notations.

An important property of statements in the weakest precondition calculus is monotonicity. Ail
reasonable statements of a programming notation should denote monotonie predicate transfonners.
Statement constructors should also be monotonie with respect to the refinement relation on state­
ments [1 J. We prove that ail the statement constructors introduœd here have both these monotonicity
properties.

21 One of our main motivations for this work is the desire to mechat""1ize reasoning about progra..ms,
using a theorem prover based on simple type theory. One suc.l:! prover is HOL [6J, and we have
admittedly been inspired by the HOL logic when we developed this theory. Our aim is to overcome
some of the problems encountered ln formalizing the theory of imperative languages using theorem
provers [7, 6, 4J.

The formalization of predicate transformers and refinement calculns as described here has in fact
been implemented in HOL as a mechanized theory. The monotonicity results st«tcd here have also
al! been constrncted and checked in HOL.

3, The paper is organized as follows. In the next section, we give a very brief overview of higher order
iogic. In Section 3 we describe the basic ideas underlying our fonnalization of predicate transformers.
Section 4 shows how ta define baBic progrrun statements within this framework. Sedion 5 introdnces

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

sorne additional constructs, that are found useful in practice, and which can be defined in terms of the
basic constructs. Section 6 proves that all the constructs introduced have the required monotonicity
properties. Section 7 enels with a few comments and rernarks.

2 Higher order logic

1. The logic assumed is a polymorphie higher order logic. We assume that there is a collection of
basic types. Every type u is interpreted as a set (also denoted u). Examples of basic types are bool
(the booleans), num (the natural numbers) and int (the integers). We adopt the convention that
constants and type names are written in typewriter font.

We use traditional symbols for logical connectives. The boolean truth values are denoted F
(falsity) and T (truth). The scope of binders (V, 3 and A) extends as far to the right as possible.

From the basic types we can form new types by repeatedly applying type constructors: we will
need only product types a X T and function types (j ---4 T, defined as liSUal. For a given type a, the
predicate type fi is defined by

7f ~f a ~ bool.

This type is so common in our treatment that it is convenient ta have it as an abbreviation.

2. The elements of fi can also be interpreted as sets, by identifying a set with its characteristic
function. Thus p is identified with the set

{si ps}

Then we can write e.g.) 0 for false and pU q for p 1\ q. We alsa have that v Epis equivalent
to p v. We will use the predicate and the set notation interehangeably, ehoosing whichever is more
convenient for the moment.

We alsa generalize the set notation in the following way: for arbitrary q : a: --+ f3 and p : a: --+ bool
the notation

{qsls:ps}

(the set of all q s where s ranges over ail values such that ps holds) stands for the corresponding
characteristic function

A8'. 3s.ps 1\ (Si = qs)

3. In the HOL system, rigorous l'roofs are carried out within the framework of a sequent calculus.
In arder ta make proofs shorter 1 we use an informal ealculational praof style in this paper. However,
all proofs are easily transformed into formaI proofs.

Since the logie is higher-order, we permit quantification and lambda abstraction over arbitrary
types. Functions can have arguments of any type. New constants can be introduced by simple
definitions. When defining a function f we often write

Jx ~ E

rather than the equivalent J ~ Ax. E. Note that in a definition such as (1), all free variables of E
must occur free on the left hand side also.

4. We permit type variables <>, fJ and 'Y in types. A type variable can be instantiated to any type
(even to a type containing type variables). This meaIlS that we can define polymorphie constants.
An example of a polymorphie constant is illfix equality, with type

=: a: -Jo a --+ bool

(the fact that a term t has type u is indicated by writing t : u).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

