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Preface

This monograph looks at computer organization from a strictly conceptual
point of view to identify the very basic mechanisms and runtime structures
necessary to perform algorithmically specified computations. It completely
abstracts from concrete programming languages and machine architectures,
taking the A-calculus — a theory of computable functions — as the basic pro-
gramming and program execution model. In its simplest form, the A-calculus
talks about expressions that are constructed from just three syntactical figures
— variables, functions (in this context called abstractions) and applications
(of operator to operand expressions) — and about a single transformation rule
that governs the substition of variable occurrences in expressions by other ex-
pressions. This B-reduction rule contains in a nutshell the whole story about
computing, specifically about the role of variables and variable scoping in this
game.

Different implementations of the [-reduction rule in conjunction with
strategies that define the sequencing of S-reductions in complex expressions
give rise to a variety of abstract A-calculus machines that are studied in
this text. These machines share, in one way or another, the components of
Landin’s SECD machine — a program text to be executed, a runtime envi-
ronment that holds delayed substitutions, a value stack, and a dump stack
for return continuations — but differ with respect to the internal representa-
tion of A-expressions, specifically abstractions, the structure of the runtime
environments and the mechanisms of program execution.

This text covers more than just implementations of functional or function-
based languages such as MIRANDA, HASKELL, CLEAN, ML or SCHEME which
realize what is called a weakly normalizing A-calculus that uses a naive version
of the -reduction rule. The emphasis is instead on A-calculus machines that
are fully normalizing, using a complete and correct implementation of the -
reduction rule, which includes the orderly resolution of naming conflicts that
may occur when free variables are substituted under abstractions. This feature
is an essential prerequisite for correct symbolic computations that treat both
functions and variables truly as first-class objects. It may, for instance, be
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used to advantage in theorem provers to establish equality between two terms
that contain variables, or to symbolically simplify expressions in the process
of high-level program optimizations.

In weakly normalizing machines, the flavors of a full-fledged S-reduction
are traded in for naive substitutions that are simpler to implement and re-
quire less complex runtime structures, resulting in improved runtime efficiency.
Naming conflicts are consequently avoided by outlawing substitutions under
abstractions, with the consequence that only ground terms (or basic values)
can be computed. Weakly normalizing machines are therefore the standard ve-
hicles for the implementation of functional or function-based languages whose
semantics conform to this restriction. However, they are also used as inte-
gral parts of fully normalizing machines to perform the majority of those
[-reductions that in fact can be carried out naively. Whenever substitutions
need to be pushed under abstractions, a special mechanism equivalent to full
[-reductions takes over to perform renaming operations that resolve potential
name clashes.

Abstract machines for classical imperative languages are shown to be de-
scendants of weakly normalizing machines that allow side-effecting operations,
specified as assignments to bound variables, on the runtime emvironment.
These side effects destroy important invariance properties of the A-calculus
that guarantee the determinacy of results irrespective of execution orders,
leaving just the static scoping rules for bound variables intact. In this degen-
erate form of the A-calculus, programs are primarily executed for their effects
on the environment, as opposed to computing the values of the expressions of
a weakly or fully normalizing A-calculus.

This monograph, though not exactly mainstream, may be used in a grad-
uate course on computer organization/architecture that focuses on the essen-
tials of performing computations mechanically. It includes an introduction to
the A-calculus, specifically a nameless version suitable for machine implemen-
tation, and then continues to describe various fully and weakly normalizing
A-calculus machines at different levels of abstractions (direct interpretation,
graph interpretation, execution of compiled code), followed by two kinds of
abstract machines for imperative languages. The workings of these machines
are specified by sets of state transition rules. The book also specifies, for code-
executing abstract machines, compilation schemes that transform an applied
A-calculus taken as a reference source language to abstract machine code.
Whenever deemed helpful, the execution of small example programs is also
illustrated in a step-by-step fashion by sequences of machine state transitions.

I have used most of the material of this monograph in several graduate
courses on computer organization which I taught over the years at the Uni-
versity of Kiel. Some of the material (Chaps. 2, 3 and the easier parts of
Chaps. 4, 5) I even used in an undergraduate course on programming. The
general impression was that at least the brighter students, after some time of
getting used to the approach and to the notation, caught on pretty well to
the message that I wanted to get across: understanding basic concepts and



Preface IX

principles of performing computations by machinery (with substitution as the
most important operation) that are invariant against trendy ways of doing
things in real computing machines, and how they relate to basic program-
ming paradigms.
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