W.Kluge

Abstract
Computing
Machines

A Lambda Calculus Perspective

With 89 Figures

@ Springer

Authors

Prof. Dr. Werner Kluge

Institut fiir Informatik und Praktische Mathematik
Christian-Albrechts-Universitit zu Kiel
Olshausenstrasse 40b, 24098 Kiel, Germany
wk@informatik.uni-kiel.de

Series Editors

Prof. Dr. Wilfried Brauer Prof. Dr. Arto Salomaa

Institut fiir Informatik der TUM Turku Centre for Computer Science
Boltzmannstrasse 3 Lemminkiisenkatu 14 A

85748 Garching 20520 Turku

Germany Finland
Brauer@informatik.tu-muenchen.de asalomaa@utu.fi

Prof. Dr. Grzegorz Rozenberg

Leiden Institute of Advanced Computer Science
University of Leiden

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

rozenber@liacs.nl

Library of Congress Control Number: 2004117887

ACM Computing Classification (1998): D.3.2,D.3.4,F.3
ISBN 3-540-21146-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm
or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under
the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Cover design: KiinkelLopka, Heidelberg

Typesetting: Camera ready by authors

Production: LE-TeX Jelonek, Schmidt & Véckler GbR, Leipzig
Printed on acid-free paper SPIN: 10991046 45/3142/YL-543210

Klaus Berkling
1931 — 1997

Preface

This monograph looks at computer organization from a strictly conceptual
point of view to identify the very basic mechanisms and runtime structures
necessary to perform algorithmically specified computations. It completely
abstracts from concrete programming languages and machine architectures,
taking the A-calculus — a theory of computable functions — as the basic pro-
gramming and program execution model. In its simplest form, the A-calculus
talks about expressions that are constructed from just three syntactical figures
— variables, functions (in this context called abstractions) and applications
(of operator to operand expressions) — and about a single transformation rule
that governs the substition of variable occurrences in expressions by other ex-
pressions. This B-reduction rule contains in a nutshell the whole story about
computing, specifically about the role of variables and variable scoping in this
game.

Different implementations of the [-reduction rule in conjunction with
strategies that define the sequencing of S-reductions in complex expressions
give rise to a variety of abstract A-calculus machines that are studied in
this text. These machines share, in one way or another, the components of
Landin’s SECD machine — a program text to be executed, a runtime envi-
ronment that holds delayed substitutions, a value stack, and a dump stack
for return continuations — but differ with respect to the internal representa-
tion of A-expressions, specifically abstractions, the structure of the runtime
environments and the mechanisms of program execution.

This text covers more than just implementations of functional or function-
based languages such as MIRANDA, HASKELL, CLEAN, ML or SCHEME which
realize what is called a weakly normalizing A-calculus that uses a naive version
of the -reduction rule. The emphasis is instead on A-calculus machines that
are fully normalizing, using a complete and correct implementation of the -
reduction rule, which includes the orderly resolution of naming conflicts that
may occur when free variables are substituted under abstractions. This feature
is an essential prerequisite for correct symbolic computations that treat both
functions and variables truly as first-class objects. It may, for instance, be

VIII Preface

used to advantage in theorem provers to establish equality between two terms
that contain variables, or to symbolically simplify expressions in the process
of high-level program optimizations.

In weakly normalizing machines, the flavors of a full-fledged S-reduction
are traded in for naive substitutions that are simpler to implement and re-
quire less complex runtime structures, resulting in improved runtime efficiency.
Naming conflicts are consequently avoided by outlawing substitutions under
abstractions, with the consequence that only ground terms (or basic values)
can be computed. Weakly normalizing machines are therefore the standard ve-
hicles for the implementation of functional or function-based languages whose
semantics conform to this restriction. However, they are also used as inte-
gral parts of fully normalizing machines to perform the majority of those
[-reductions that in fact can be carried out naively. Whenever substitutions
need to be pushed under abstractions, a special mechanism equivalent to full
[-reductions takes over to perform renaming operations that resolve potential
name clashes.

Abstract machines for classical imperative languages are shown to be de-
scendants of weakly normalizing machines that allow side-effecting operations,
specified as assignments to bound variables, on the runtime emvironment.
These side effects destroy important invariance properties of the A-calculus
that guarantee the determinacy of results irrespective of execution orders,
leaving just the static scoping rules for bound variables intact. In this degen-
erate form of the A-calculus, programs are primarily executed for their effects
on the environment, as opposed to computing the values of the expressions of
a weakly or fully normalizing A-calculus.

This monograph, though not exactly mainstream, may be used in a grad-
uate course on computer organization/architecture that focuses on the essen-
tials of performing computations mechanically. It includes an introduction to
the A-calculus, specifically a nameless version suitable for machine implemen-
tation, and then continues to describe various fully and weakly normalizing
A-calculus machines at different levels of abstractions (direct interpretation,
graph interpretation, execution of compiled code), followed by two kinds of
abstract machines for imperative languages. The workings of these machines
are specified by sets of state transition rules. The book also specifies, for code-
executing abstract machines, compilation schemes that transform an applied
A-calculus taken as a reference source language to abstract machine code.
Whenever deemed helpful, the execution of small example programs is also
illustrated in a step-by-step fashion by sequences of machine state transitions.

I have used most of the material of this monograph in several graduate
courses on computer organization which I taught over the years at the Uni-
versity of Kiel. Some of the material (Chaps. 2, 3 and the easier parts of
Chaps. 4, 5) I even used in an undergraduate course on programming. The
general impression was that at least the brighter students, after some time of
getting used to the approach and to the notation, caught on pretty well to
the message that I wanted to get across: understanding basic concepts and

Preface IX

principles of performing computations by machinery (with substitution as the
most important operation) that are invariant against trendy ways of doing
things in real computing machines, and how they relate to basic program-
ming paradigms.

Acknowledgments

There are several people who contributed to this text with discussions and
suggestions relating to its contents, with critical comments on earlier drafts,
and with careful proofreading that uncovered many errors (of which some
would have been somewhat embarrassing).

T am particularly indebted to Claus Reinke who gave Chaps. 5 to 8 and Ap-
pendix A a very thorough going-over, made some valuable recommendations
that helped to improve verbal explanations and also the formal apparatus,
specifically in Appendix A which I have largely adopted from his excellent
PhD thesis, and provided me with a long list of ambiguities, notational in-
consistencies and errors. Some intensive discussions with Sven-Bodo Scholz
on head-order reduction, specifically on the problem of shared evaluation,
led to substantial improvements of Chaps. 6 to 8. He also pointed out quite
a few things in Chaps. 12 and 13 that needed clarification. I also had two
enlightening discussions with Henk Barendregt and Rinus Plasmeijer on A-
calculus and on theorem proving which helped to shape Chaps. 4, 11 and
Appendix B. Ulrich Bruening checked and made some helpful comments on
Chaps. 13 and 14. Hans Langmaack was always available for some insightful
discussions of language issues.

Makoto Amamiya gave me the opportunity to teach parts of this text
in a one-week seminar course at Kyushu University in Fukuoka/Japan. The
ensuing discussions gave me a fairly good idea of how the material would sink
in with graduate students who have a slightly different background, and they
also helped to correct a few flaws.

Kay Berkling, Claudia Schmittgen and Erich Valkema carefully proofread
parts of a text that was more or less unfamiliar scientific territory to them,
pointing out a few things that needed to be clarified, explained in more detail
(by more examples), or simply corrected.

Last, not least, I wish to thank the people at Springer for their support of
this project, especially Ingeborg Mayer, Ronan Nugent, Frank Holzwarth and,
most importantly, Douglas Meekison who as a copyeditor did an excellent job
of polishing the style of presentation, the layout of the text, and the English.
There was hardly anything that escaped his attention.

... and there was Moni whose occasional peptalks kept me going.

Werner Kluge, November 2004

Contents

1 Introduction......... 1
2 Algorithms and Programs 11
2.1 Simple Algorithms i 14
2.1.1 Getting Started with Some Basics 15

2.1.2 Recursive Functions 19

2.1.3 The Termination Problem 23

2.1.4 Symbolic Computations 24

2.1.5 Operating on Lists o .. 30

2.2 A Word on Typingouiiiiii .. 31

2.3 SUIMMATY .« o vttt et et e e e e e e e 34

3 An Algorithmic Language 37
3.1 The Syntax of AL Expressions............ 38

3.2 The Evaluation of AL Expressions 41

3.3 SUIMMATY . . ottt e 47

4 The A-Calculus 51
4.1 X-Calculus Notation 52

4.2 B-Reduction and a-Conversion v, .. 53

4.3 An Indexing Scheme for Bound Variables #x................ 59

4.4 The Nameless A-Calculus.......... 63

4.5 Reduction Sequences..............ooiiuiiiniiii.. 68

4.6 Recursion in the \-Calculus................ 73

4.7 A Brief Outline of an Applied A-Calculus 78

4.8 Overview of a Typed A-Calculus........................... 79
4.8.1 Monomorphic Types 81

4.8.2 Polymorphic Types i, 83

4.9 SUIMNIMATY . . ottt ettt e e e 86

XII

Contents

The SE(M)cD Machine and Others 89
5.1 An Outline of the Original SEcD Machine................... 89
5.2 The SE(M)CD Machine 93

5.2.1 The Traversal Mechanism 94

5.2.2 Doing S-Reductions 96

5.2.3 Reducing a Simple Expression 98
5.3 The #SE(M)cD Machine for the Nameless A-Calculus 101
5.4 Implementing -Reductions, 102
5.5 Other Weakly Normalizing Abstract Machines 105

5.5.1 The K-Machine i, 105

5.5.2 The Categorial Abstract Machine 107
5.6 SUMMATLY . . . oottt et e e 108
Toward Full-Fledged A-Calculus Machines 113
6.1 Berkling’s String Reduction Machine....................... 115
6.2 Wadsworth’s Graph Reduction Techniques.................. 121
6.3 The Ao-Calculus Abstract Machine 125

6.3.1 The Ao-Calculus s, 126

6.3.2 The Abstract Machine s 130
6.4 Head-Order Reduction 132

6.4.1 Head Forms and Head-Order -Reductions 134

6.4.2 An Abstract Head-Order Reduction (HOR) Machine ** 141
6.5 SUIIMATY . . oottt et 145
Interpreted Head-Order Graph Reduction 149
7.1 Graph Representation and Graph Reduction 150
7.2 Continuing with Reductions in the Head 156
7.3 Reducing the Tails........ ... i 160
7.4 An Outline of the Formal Specification of G HOR 163
7.5 Garbage Collection i, 164
7.6 SUMMATY . oottt ettt e e et e 167
The B-Machine 171
8.1 The Operating Principles of the B-Machine 173
8.2 The Instruction Set i 174

8.2.1 Instruction Interpretation Without Sharing ** 176

8.2.2 Interpretation Under Sharing in the Head #x 179
8.3 Executing B-Machine Code: an Example % 181
8.4 Supporting Primitive Functions 186
8.0 SUMIMATY .« oottt e 189
The G-Machine 193
9.1 Basic Language Issues.......... 195
9.2 Basic Operating Principles of the G-Machine................ 197

9.3 Compiling Supercombinators to G-Machine Code 201

10

11

12

13

Contents XIII

9.4 G-Code for Primitive Functions 204
9.5 The Controlling Instructions * 205
9.6 Some G-Code Optimizations 209
9.7 SUIMMATY . . ottt e 211
The w—RED Machinery 215
10.1 The Basic Program Execution Cycle 215
10.2 The Operating Principles of the Abstract Machines 221
10.3 The Lazy Abstract Stack Machine LASM.................... 223

10.3.1 The LASM Instruction Set 225

10.3.2 Compilation to LASM Code * 228

10.3.3 Some Simple Code Optimizations 232
10.4 The Strict Abstract Stack Machine SASM 235

10.4.1 The sAsM Instruction Set 236

10.4.2 Compilation to sasM Code * 237

10.4.3 Code Execution 240
10.5 Reducing to Full Normal Forms * 244
10.6 SUMIATY . ¢ . v ettt et e e e et 249
Pattern Matching. 253
11.1 Pattern Matching in AL 253
11.2 Programming with Pattern Matches 255
11.3 Preprocessing Pattern Matches 258
11.4 The Pattern Matching Machinery........... 260
11.5 Compiling Pattern Matches to LASM Code *................ 263
11.6 Code Generation and Execution: an Example % 265
11.7 SUMIATY .« o oe ettt e e e e e 268
Another Functional Abstract Machine 271
12.1 The Machine and How It Basically Works 272

12.1.1 Some Semantic Issues i, 273

12.1.2 Index Tuples and the Runtime Environment 275
12.2 The SECD I Instruction Set, 279
12.3 Compilation to SECD 1 Code, 282
12,4 SUMMATY . . ottt e 285
Imperative Abstract Machines............................. 289
13.1 Outline of an Imperative Kernel Language 291
13.2 An Example of an IL Program 294
13.3 The Runtime Environment 296

13.3.1 Using Static and Dynamic Links 298

13.3.2 Dropping Dynamic Links 300

13.3.3 Calculating Stack Addresses * 302
13.4 The Instruction Set i 304

13.5 Compiling 1L Programs to IAM Code * 306

XIV ~ Contents
13.6 Compiling the Bubble-Sort Program 309
13.7 Outline of a Machine for a ‘Flat’ Language 312
13.8 SUMMATY . .« v e 318
14 Real Computing Machines 321
14.1 A Typical CISC Architecture 323
14.1.1 The Register Set, Formats and Addressing in Memory . 324
14.1.2 Addressing Modes 326
14.1.3 Some Important Instructions. 328
14.1.4 Implementing Procedure Calls 330
14.2 A Typical RISC Architecture 334
14.2.1 The SPARC Register Set 335
14.2.2 Some Important SPARC Instructions 339
14.2.3 The SPARC Assembler Code for Factorial 341
14.3 SUMMATY . . oot 344
A Input/Output ... 347
A.1 Functions as Input/Output Mappings 348
A.2 Continuation-Style Input/Output. 354
A.3 Interactions with a File System 357
B On Theorem Proving 361
References. 369

