
Texts in Theoretical Computer Science.
An EATCS Series

Markus Roggenbach · Antonio Cerone ·
Bernd-Holger Schlingloff ·
Gerardo Schneider · Siraj Ahmed Shaikh

Formal
Methods
for Software
Engineering
Languages, Methods, Application
Domains

Texts in Theoretical Computer Science.

An EATCS Series

Series Editors

Juraj Hromkovič, Gebäude CAB, Informatik, ETH Zürich, Zürich, Switzerland

Mogens Nielsen, Department of Computer Science, Aarhus Universitet, Aarhus,

Denmark

More information about this series at https://link.springer.com/bookseries/3214

https://link.springer.com/bookseries/3214

Markus Roggenbach · Antonio Cerone ·

Bernd-Holger Schlingloff · Gerardo Schneider ·

Siraj Ahmed Shaikh

Formal Methods
for Software Engineering

Languages, Methods, Application Domains

With a foreword by Manfred Broy

and a contribution on the origins and

development of Formal Methods by John V. Tucker

Markus Roggenbach
Department of Computer Science
Swansea University
Swansea, UK

Bernd-Holger Schlingloff
Institut für Informatik
Humboldt-Universität zu Berlin
Berlin, Germany

Siraj Ahmed Shaikh
Institute for Future Transport and Cities
Coventry University
Coventry, UK

Antonio Cerone
Department of Computer Science
Nazarbayev University
Astana, Kazakhstan

Gerardo Schneider
Department of Computer Science
and Engineering
University of Gothenburg
Gothenburg, Sweden

ISSN 1862-4499 ISSN 1862-4502 (electronic)
Texts in Theoretical Computer Science. An EATCS Series
ISBN 978-3-030-38799-0 ISBN 978-3-030-38800-3 (eBook)
https://doi.org/10.1007/978-3-030-38800-3

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3819-2787
https://doi.org/10.1007/978-3-030-38800-3

The title page shows detail from the cover of the book “Rechnung auff der Linihen und Federn”

by Adam Ries, Sachsse, Erffurdt, 1529.1 It depicts the following scene: “A table-abacus competes

against longhand calculations using ‘Arabic’ numerals, which were still new in Europe. Either one

could trounce calculating by hand with Roman numerals—but which was faster? Are the coins a

wager on the outcome?”2

In his book Ries describes two practices: working with the calculation board (established practice)

and numerical calculations with digits (new practice). Historically, as we all know, the new practice

as the superior one took over.

In the same sense, the authors of this book hope that their advocated approach of utilising Formal

Methods in software engineering will prove to be of advantage and become the new standard.

1 Cover of the book “Rechnung auff der Linihen und Federn” by Adam Ries, Sachsse, Erffurdt,

1529. Digitized by SLUB Dresden.

Link to the image: http://digital.slub-dresden.de/id267529368/9.

Link to the rights notice: https://creativecommons.org/publicdomain/mark/1.0/.
2 See: https://www.computerhistory.org/revolution/calculators/1/38/139.

http://digital.slub-dresden.de/id267529368/9
https://creativecommons.org/publicdomain/mark/1.0/
https://www.computerhistory.org/revolution/calculators/1/38/139

Foreword by Manfred Broy

The development of programs and software engineering are fascinating technical

challenges. If software runs on a piece of hardware, if the hardware is embedded into

a cyber-physical system, and as soon as the system is started, a process is initiated

and the system shows some behaviour and—if designed and programmed in a careful

way—it performs a certain task and it generates a behaviour which fulfills specific

expectations.

As we have painfully experienced, software systems show a complexity, espe-

cially if they are large and used in complicated applications that are often beyond the

imagination of engineers. As a result, we all have learned to work and live with imper-

fect software systems that often show behaviours and properties which are different

from what we expect and—in the worst case—do not perform the task software was

written for. This is unacceptable—not only in safety critical applications.

As a result, there is a lot of research to find better ways to engineer software

systems such that they become reliable and show high quality. High quality means

that they provide adequate user interfaces, guarantee the expected functionality, or,

even more, over-fulfill the purposes they are built for and that they behave never in

an incorrect way. For the engineering of such systems, a large number of proposals

have been published and also experimented with, in practice. Some of them being

quite useful and successful, others did not deliver what they promised.

An important observation is that computer programs and software in general

are formal objects. They are written in a formal language, they are executed on a

machine with a formal operational semantics, and each statement of the program-

ming language results in precisely defined behaviours of the machine (state changes,

input, and output) exactly determined by the software. In the end, strictly speaking,

software is just a huge formula—however, usually not written in the classical style

of mathematical formulas, but in the style of algorithmic languages. But, after all, it

is a formal object. This means that we are and should be able to provide a kind of

a formal theory that describes the elements of the programming languages and the

behaviour of programs that is expressed and generated by these elements.

This underlines that there is a difference between writing a text in a natural

language and writing a program. Soon, we have learned that writing a program

vii

viii Foreword by Manfred Broy

is error-prone. Too many things have to be kept in mind and thought of when writing

a line of program text such that it is very likely that what we are writing is sometimes

not what we want.

Here formal theories can help a lot to give a precise meaning and some deep

understanding, not only for programs and the behaviours they generate, but also for

specifications which formally describe certain aspects of program behaviour. The

main contribution of formalization is precision, abstraction, and helpful redundancy.

Redundancy means that we work out different—if possible formal—more adequate

formulations of specific aspects that support the concentration onto specific proper-

ties. This way, relevant aspects are represented in isolation to be able to study them

independently which may reduce complexity. This has led to a number of formal

theories addressing quite different aspects of programs including their functional

behaviour, quality issues, and questions of robustness.

This shows that theories providing formal foundations for formalisms, languages,

and also for methods in software construction are indispensable artifacts to support

software development.

In the academic community, having all this in mind, soon the term “Formal Meth-

ods” has been become popular. This term is carefully defined and explained in this

book. It is illustrated both by examples and use cases as well as by careful discussion

and proper definitions.

For Formal Methods, the challenge is to keep the balance between being formal

and providing methods. In this book, numerous examples are given for such a line of

attack, but we have to always keep in mind that it is dangerous to define a formalism

and to believe that this formalism is already a development method. However, here is

another challenge: in the details of the definitions of formalisms, we have to decide

about concepts that are critical and difficult. A simple example would be the use

of partial functions in specifications: as long as all functions are total, expressions

written with these functions have well-defined values. For partial functions, it gets

much trickier: what is the value of an expression when certain subexpressions are

built of partial functions which happen not to provide a result for this particular

application? What is the value of the overall expression then? Is it always undefined?

What are the rules to deal with this and to reason about it? Of course, there are

many different ways to provide a theory for expressions with partial functions, but

obviously not all of them are equally well-behaving and well-suited for engineering.

Therefore, when defining formal theories, a rich number of delicate questions have

to be solved—many of them related to the goal to use the formalism as an element

of a Formal Method.

Another example is how to represent concurrency. Concurrency is a fact of

everyday life. We are living in a concurrent world. Our software systems are

connected and run concurrently. There are a number of constructs that have been

invented to describe concurrent structures and concurrent processes of software

systems by formal theories, and again there are challenges—first of all, to come

up with a sound theory and a formal model and second to deal with the question

whether the theory is exactly addressing the structures and behaviours which are

typical for practical systems on one side and are easy to deal with on the other side.

Foreword by Manfred Broy ix

Therefore, it is a very valuable contribution of this book to present an interesting

selection of formal theories and to explain how they can be used in the context of

methods for software engineering. Certainly, this is a book highly relevant for people

interested in formal theories for software engineering usable as elements of methods.

It also addresses students in informatics who want to learn about this subject and,

even more, scientists who work on formal theories and methods.

I hope this book will also find interest by practical engineers to give them some

clue how formal foundations and rigorous methods could be combined to formal

methods to help them in their everyday development tasks.

July 2021 Manfred Broy

Preface

De Omnibus Dubitandum—“Doubt Everything”

R. Descartes

This book is about Formal Methods in software engineering. Although software

engineering is nowadays a largely empirical science, its foundations rely on math-

ematics and logic. Ultimately, the task of a software engineer is to transform ideas

into programs. Ideas are by nature informal, and they are often vague and subjective.

In contrast, a program is a formal entity with a precise meaning, and this meaning

is independent of the programmer. Therefore, the transition from ideas to programs

necessarily involves a formalisation at some point. An early formalisation has several

benefits:

• It allows to formulate concepts on an abstract level;
• it is a means for unambiguous communication of ideas;
• it helps to resolve misunderstandings, thus preventing errors at a later stage; and
• it enables to gain insights by transformation, simulation, and proof.

Formal Methods are a way to realize these advantages in a rigorous process.

This book elaborates on several views of how to do this. In Chap. 1, we approach

a definition of what actually constitutes a Formal Method. The rest of the book is

structured into three parts: languages, methods, and application domains. These parts

represent different dimensions of the views:

1. A language is a means to formally describe ideas;

2. a method is a set of procedures for manipulating such descriptions; and

3. an application domain represents a concrete way in which real-life problems

drive the different views.

Each part consists of several chapters which are more or less independent.

xi

xii Preface

In the languages part, we present “classical” views on elements of computation.

Chapter 2: Logics are formal languages to describe reasoning.

Chapter 3: The process algebra Csp is a formal language to describe behaviours.

In the methods part, we discuss a variety of procedures.

Chapter 4: Casl is a computer supported method for the specification of software,

which is based on classical logic as discussed in the language part.

Chapter 5: Specification-based testing is a computer supported method for the

validation of software.

Finally, the application part provides three contributions to apply Formal Methods

to real-world problems.

Chapter 6: In the chapter on specification and verification of normative documents,

we discuss a way to reason about legal contracts with logic.

Chapter 7: In the chapter on Formal Methods for human-computer interaction, we

discuss how to capture cognitive theories with logic and CSP.

Chapter 8: In the chapter on formal verification of security protocols, we discuss

how to verify authentication properties with CSP.

These three chapters have in common that they present solutions to general challenges

in software engineering. These solutions are based on the application of one specific

Formal Method. It should be noted, though, that other Formal Methods would be

applicable to these challenges as well.

We conclude our book by providing a historical perspective on Formal Methods

for software engineering:

Chapter 9: In the chapter on the history of Formal Methods, John V. Tucker surveys

some of the problems and solution methods that have shaped and become the

theoretical understanding and practical capability for making software.

This is followed by some summarizing and reflecting remarks from the book authors.

Audience, Prerequisites, and Chapter Dependencies

This book addresses final year B.Sc. students, M.Sc. students, and Ph.D. students in

the early phases of their research. It is mainly intended as a underlying textbook for

a university course. Formal Methods are one means in software engineering that can

help ensure that a computer system meets its requirements. They can make descrip-

tions precise and offer different possibilities for analysis. This improves software

development processes, leading to better, more cost-effective, and less-error-prone

systems.

Due to their ubiquity, software failures are overlooked by society as they tend

to result in nothing more serious than delays and frustrations. We accept it as mere

Preface xiii

inconvenience when a software failure results in a delayed train or an out-of-order

cash machine or a need to repeatedly enter details into a website. However, the

problems of systems failures become more serious (costly, invasive, and even deadly)

as automatic control systems find their way into virtually every aspect of our daily

lives. This increasing reliance on computer systems makes it essential to develop

and maintain software in which the possibility and probability of hazardous errors

are minimised. Formal Methods offer cost-efficient means to achieve a high degree

of software quality.

However, in computer science and software engineering education, Formal

Methods usually play a minor role only.3 Often, this is due to the lack of suitable

textbooks. Typical questions an academic teacher faces when preparing such a course

include the following: Which of the many Formal Methods shall be taught? Will the

topics be relevant to mainstream students? Which examples and case studies should

be used? This book offers constructive answers to such questions. It does not focus

on one specific Formal Method, but rather provides a wider selection of them. For

each method, material from basic to a more advanced level is presented. Thus, the

teacher can choose to what depth a specific method shall be studied. All material is

illustrated by examples accessible to the target audience.

Moreover, for individual students, this book can serve as a starting point for their

own scientific work, e.g., in a thesis. Even if the reader does not plan to work directly

in one of the addressed areas, the book offers solid background knowledge of Formal

Methods as a whole.

We assume some basic knowledge of mathematical notation as taught in the first

two years of typical B.Sc. curricula in computer science or software engineering.

However, we will introduce all formal concepts from scratch, whenever they are

used. For the casual reader, the book contains an index, where one can look up the

defining page for each technical term.

The material in Part I is foundational for the subsequent parts, whereas the chapters

in Parts II and III can be read in any order. General dependencies are depicted in

Fig. 1.

More specifically, dependency on the introduction is only from a motivational,

but not from a technical point of view. In reading the book, Part I can serve as a

“reference”, Part II and Part III depend on Part I only in some technical aspects. The

reader interested just in specific topics of these parts can safely start there and refer

to Part I only when needed.

Although the linear order of reading the chapters would be preferred, for readers

who want to focus on specific aspects, the authors suggest two possible alternative

paths through the book. Chapter 1 provides a common start to both.

The first path is for those who wish to stay with logic: Chapter 2 leads on to

Chap. 4 to provide a grounding in logic and the use in algebraic specifications.

Chapter 6 follows on as an area of application for modal logics.

3 See, e.g., Cerone et al., Rooting Formal Methods within Higher Education Curricula for Computer

Science and Software Engineering, 2020, https://arxiv.org/abs/2010.05708.

https://arxiv.org/abs/2010.05708

xiv Preface

❄ ❄

❄ ❄

❄ ❄

❄ ❄

✲

❄

✛

Fundamentals
Chapter 1

Formal Methods

Part I

Languages

Chapter 2

Logic

Chapter 3

CSP

Part II

Methods

Chapter 4

Alg. Spec.

Chapter 5

Testing

Part III

Application domains

Chapter 6

Contracts

Chapter 7

HCI

Chapter 8

Security

Part IV

Wrapping up

Chapter 9

Origins and Development of FM

Conclusion

Fig. 1 Structure of the book

An alternative path starts with Chap. 3, thoroughly covering CSP both in theory

and practice. Chapter 5 offers a formal perspective on testing. Chapters 7 and 8

provide case studies both using CSP to demonstrate how the process algebra is

applied. Only the last part of Chap. 7 depends on logic, limited to temporal logic.

Chapter 9, written by our colleague John V. Tucker, puts the contents of the

previous chapters into the historical context. It can be read at any time and it is

independent of any of the other chapters.

The conclusion serves to summarise and remind the reader of the final message

of the book. It is the natural ending to any reading path.

Preface xv

Book Use and Online Supporting Materials

This is not a typical software engineering book. Nor is it promoting a particular

formal approach as many books on the subject do. Formal methods are increasingly

acknowledged amongst the wider software community. However, there is no evidence

to suggest that they are widely adopted. It is this gap that this book is designed to

address. The use of tools is emphasised and supported; the expectation is that certain

parts are to be done rather than just read. Therefore, the authors have set up a website

for the book which contains exercises and links to tools. Currently, this website can

be accessed at

https://sefm-book.github.io.

Book History

The inception of this book is due to the first International School on Software Engi-

neering and Formal Methods held in Cape Town, South Africa, from late October

to early November of 2008, organised by Antonio on behalf of the United Nations

University International Institute for Software Engineering (UNU-IIST), which was

located in Macau, SAR China. The two-week school consisted of five courses on

the application of Formal Methods to software design and verification delivered to

an audience of graduate and research tudents from several African countries, who

were hosted by UNU-IIST. In line with the UNU-IIST mandate, the authors were

encouraged to find young minds taking up the challenge of Formal Methods and

demonstrating commitment to it. The book draws upon the topics of the school with

a similar audience in mind and a strong desire to make the subject more widely

accessible. Hence learning is promoted through examples running across the book.

The pedagogic style is largely owed to the instructional setting offered by the school.

Two more schools followed, in Hanoi, Vietnam, in November 2009, and in Thes-

saloniki, Greece, in September 2012, are also hosted by UNU-IIST. These events

provided additional opportunities for feedback and reflection from school partici-

pants. UNU-IIST hosted Markus for one week in 2009. During that meeting, Antonio

and Markus sketched the first structure of the book. UNU-IIST organised a one-week

workshop in August 2012 in Mezzana (Val di Sole), Italy. During this workshop, the

authors decided the final structure and content of the book. After the closing of UNU-

IIST in 2013, the authors continued the collaboration through regular virtual meet-

ings and some physical meetings in Coventry and Swansea, UK. Since January 2020,

Antonio Cerone, School of Engineering and Digital Sciences, Nazarbayev University,

Nur-Sultan, Kazakhstan, has been partly funded to work on the book by the Project

SEDS2020004 “Analysis of cognitive properties of interactive systems using model

checking”, Nazarbayev University, Kazakhstan (Award number: 240919FD3916).

During the years since the Mezzana workshop, the book content has been updated

and widely tested in undergraduate and postgraduate courses by the authors and a

https://sefm-book.github.io

xvi Preface

number of their colleagues at various universities around the world. The intense

cycle of collaborative writing, internal reviewing, and in-class testing was followed

by an external reviewing process, in which the reviewers offered their reflections on

individual chapters and then incorporated in the final revision by the authors.

Author Team

The book’s content, organisation, and writing style were curated by the five book

authors. The author team reached out to John V. Tucker, who kindly accepted our

invitation to contribute a chapter on the origins and development of Formal Methods.

For the writing of some individual chapters, the author team invited Liam O’Reilly

for the chapter on algebraic specification in Casl and Hoang Nga Nguyen for the

chapter on formal verification of security protocols. The book authors are grateful

for their contributions, which made it possible for the book to appear in its current

form.

Swansea, UK

Nur-Sultan, Kazakhstan

Berlin, Germany

Gothenburg, Sweden

Coventry, UK

September 2021

Markus Roggenbach

Antonio Cerone

Bernd-Holger Schlingloff

Gerardo Schneider

Siraj Ahmed Shaikh

Acknowledgments

The authors would like to express their gratitude to a number of people. The following

colleagues, listed in alphabetical order, were so kind to contribute in different

ways, including reading (parts of) the book and commenting on it: Ulrich Berger,

Mihai Codescu, Alan Dix, Stephen Fenech, Marie-Claude Gaudel, Michael Harrison,

Magne Haveraaen, Yoshinao Isobe, Alexander Knapp, Ranko Lazić, Antónia Lopes,

Faron Moller, Till Mossakowski, Gordon Pace, Jan Peleska, Cristian Prisacariu, Jörn

Müller-Quade, Fernando Schapachnik, Steve Schneider, and David Williams. We are

grateful for their input and feedback that helped greatly shaping and improving our

book. Manfred Broy provided a foreword to our book, which we very much appre-

ciate. We also would like to thank Alfred Hoffman, Ronan Nugent, Wayne Wheeler,

and Francesca Ferrari from Springer Verlag for their help, support, and patience.

Swansea, UK

Nur-Sultan, Kazakhstan

Berlin, Germany

Gothenburg, Gothenburg

Coventry, UK

September 2021

Markus Roggenbach

Antonio Cerone

Bernd-Holger Schlingloff

Gerardo Schneider

Siraj Ahmed Shaikh

xvii

Contents

1 Formal Methods . 1

Markus Roggenbach, Bernd-Holger Schlingloff,

and Gerardo Schneider

1.1 What Is a Formal Method? . 1

1.1.1 An Application in Space Technologies 2

1.1.2 An Everyday Application . 5

1.2 Formal Methods in Software Development . 12

1.2.1 The Software Life Cycle . 13

1.2.2 Formal Methods: When and Where . 16

1.2.3 A Classification Scheme for Formal Methods 19

1.2.4 Tool Support for Formal Methods . 21

1.3 Formal Methods in Practice . 25

1.3.1 Comparative Surveys and Case Studies 25

1.3.2 Industrial Practice . 29

1.3.3 How to Get Started . 36

1.4 Closing Remarks . 38

1.4.1 Current Research Directions . 38

References . 42

Part I Languages

2 Logics for Software Engineering . 49

Bernd-Holger Schlingloff, Markus Roggenbach,

Gerardo Schneider, and Antonio Cerone

2.1 Logic in Computer Science . 49

2.2 Propositional Logic—An Archetypical Modelling Language 51

2.2.1 Example: Car Configuration . 51

2.2.2 Syntax and Semantics of Propositional Logic 53

2.2.3 Propositional Methods . 56

2.3 A Framework for Logics . 63

2.3.1 Specification . 64

xix

xx Contents

2.4 First- and Second-Order Logic . 70

2.4.1 FOL . 70

2.4.2 Second-Order Logic . 76

2.4.3 The Logic of Casl . 81

2.5 Non-Classical Logics . 91

2.5.1 Modal and Multimodal Logics . 92

2.5.2 Deontic Logic . 96

2.5.3 Temporal Logic . 101

2.6 Closing Remarks . 106

2.6.1 Annotated Bibliography . 107

2.6.2 Current Research Directions . 108

References . 109

3 The Process Algebra CSP . 113

Markus Roggenbach, Siraj Ahmed Shaikh, and Antonio Cerone

3.1 Introduction . 113

3.2 Learning Csp . 115

3.2.1 ATM Example: Csp Syntax . 115

3.2.2 Understanding the Semantics—Modelling a Jet

Engine Controller . 130

3.2.3 Understanding Refinement—Modelling Buffers 142

3.3 The Children’s Puzzle or What Csp Tools Can Do 156

3.3.1 The Arithmetic Side of the Puzzle . 158

3.3.2 An Asynchronous Model of the Puzzle in Csp 160

3.3.3 Analysing the Csp Model with Tool Support 161

3.3.4 A Transformational Approach to Implementation 164

3.4 Semantics and Analysis . 166

3.4.1 The Three Standard Models . 167

3.4.2 Algebraic Laws . 180

3.4.3 Foundations: Fixed Points . 181

3.4.4 Checking for General Global Properties 187

3.5 Closing Remarks . 194

3.5.1 Annotated Bibliography . 194

3.5.2 Current Research Directions . 195

References . 195

Part II Methods

4 Algebraic Specification in CASL . 201

Markus Roggenbach and Liam O’Reilly

4.1 Introduction . 201

4.2 A First Example: Modelling, Validating, Consistency

Checking, and Testing a Telephone Database 203

4.2.1 Modelling . 203

4.2.2 Validating . 208

4.2.3 Consistency Checking . 213

Contents xxi

4.2.4 Testing Java Implementations . 218

4.2.5 The Story so Far . 224

4.3 Verification of Ladder Logic Programs . 224

4.3.1 Programmable Logic Controllers (PLCs) 226

4.3.2 Ladder Logic . 227

4.3.3 The Automaton of a Ladder Logic Formula 231

4.3.4 Inductive Verification of Ladder Logic Programs 233

4.4 Structuring Specifications . 239

4.4.1 Extension . 241

4.4.2 Union . 242

4.4.3 Renaming . 244

4.4.4 Libraries . 248

4.4.5 Parameterisation and Instantiation . 249

4.4.6 Hiding . 252

4.5 Closing Remarks . 254

4.5.1 Annotated Bibliography . 255

4.5.2 Current Research Directions . 255

References . 256

5 Specification-Based Testing . 259

Bernd-Holger Schlingloff and Markus Roggenbach

5.1 The Role of Testing in Software Design . 259

5.2 State-Based Testing . 263

5.2.1 Modelling Stateful Systems . 264

5.2.2 Test Generation for State-Based Systems 268

5.2.3 Monitoring of Execution Traces . 270

5.2.4 Test Generation Methods and Coverage Criteria 272

5.3 Conformance Testing . 275

5.4 Using Algebraic Specifications for Testing . 283

5.5 Tool Support for Testing . 295

5.6 Closing Remarks . 298

5.6.1 Annotated Bibliography . 298

5.6.2 Current Research Directions . 300

References . 301

Part III Application Domains

6 Specification and Verification of Normative Documents 307

Gerardo Schneider

6.1 Contracts: Help or Trouble? . 307

6.2 What Are Contracts? . 308

6.2.1 On the Notion of Contract . 309

6.2.2 Motivating Examples . 309

6.3 A Framework for Specification and Analysis of Contracts 312

6.4 The CL Language . 314

6.4.1 Syntax . 314

xxii Contents

6.4.2 Semantics . 316

6.5 Verification of CL Contracts . 321

6.5.1 Conflict Analysis of CL Contracts . 321

6.5.2 The AnaCon Framework . 330

6.5.3 Runtime Verification of Contracts . 338

6.5.4 Model Checking Contracts . 338

6.6 Closing Remarks . 339

6.6.1 Annotated Bibliography . 339

6.6.2 Current Research Directions . 340

References . 341

7 Formal Methods for Human-Computer Interaction 345

Antonio Cerone

7.1 Human Errors and Cognition . 345

7.1.1 Background . 347

7.2 Human Memory and Memory Processes . 350

7.2.1 Short-Term Memory and Closure . 351

7.2.2 Long-Term Memory . 354

7.3 Human Behaviour and Interaction . 355

7.3.1 Input as Perceptions and Output as Actions 355

7.3.2 Cognitive Control: Attention and Goals 356

7.3.3 Automatic Control . 359

7.3.4 Deliberate Control . 364

7.3.5 Operator’s Deliberate Behaviour . 370

7.3.6 Switching Process Control . 371

7.4 Interface/System Model . 375

7.4.1 Experiential Knowledge and Expectations 377

7.4.2 Environment and Overall System . 381

7.5 Model Checking Analyses . 383

7.5.1 Overall System Verification . 383

7.5.2 Task Failures Analysis . 387

7.6 Closing Remarks . 389

7.7 Annotated Bibliography . 389

7.7.1 Current Research Directions . 390

References . 392

8 Formal Verification of Security Protocols . 395

Markus Roggenbach, Siraj Ahmed Shaikh, and Hoang Nga Nguyen

8.1 Introduction . 395

8.2 Basic Principles . 397

8.2.1 Cryptography . 397

8.2.2 Principles of Security . 399

8.2.3 Security Protocols . 401

8.3 Needham-Schroeder Protocol for Authentication 403

8.4 Formal Specification of Protocols and Properties 407

8.4.1 Protocol Abstraction Through Use of Symbolic Data 407

Contents xxiii

8.4.2 Message Space . 408

8.4.3 Protocol Participants in a Reliable Network 409

8.4.4 Modelling the Intruder and the Network 412

8.4.5 Formalising Authentication . 415

8.5 Protocol Analysis by Model Checking . 418

8.5.1 Encoding the Message Space in CspM 419

8.5.2 Protocol Encoding . 421

8.5.3 Encoding the Intruder in CspM . 422

8.5.4 Encoding and Verifying the Security Properties 426

8.6 Protocol Analysis by Theorem Proving . 429

8.6.1 Rank Functions . 429

8.6.2 The Rank Function Theorem . 431

8.6.3 Applying the Rank Function Theorem 434

8.7 Closing Remarks . 446

8.7.1 Annotated Bibliography . 447

8.7.2 Current Research Directions . 449

References . 450

Part IV Wrapping up

9 Origins and Development of Formal Methods . 455

John V. Tucker

9.1 Where do Formal Methods for Software Engineering Come

From? . 455

9.2 Logic . 457

9.3 Specifying Programming Languages and Programs 458

9.4 Specifications of Data . 463

9.5 Reasoning and Proof . 467

9.6 Concurrency . 470

9.7 Formal Methods Enter Specialist Areas . 474

9.8 In Conclusion . 476

References . 477

Authors’ Conclusion . 489

Appendix A: Syntax of the Logics in this Book . 493

Appendix B: Language Definition of CSP . 499

Appendix C: Concrete CASL Syntax . 515

Index . 519

