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Preface

We wrote this book with the aim of inspiring the reader to explore mathe-
matics. Our goal is to provide opportunities for students to discover math-
ematical ideas in the context of applications. Before any formal mathematics,
the text starts with two main data applications—radiography/tomography of
images and heat diffusion—to inspire the creation and development of Linear
Algebra concepts.

The applications are presented primarily through a sequence of explo-
rations. Readers first learn about one aspect of a data application, and then, in
an inquiry framework, they develop the mathematics necessary to investigate
the application. After each exploration, the reader will see the standard
definitions and theorems for a first-year Linear Algebra course, but with the
added context of the applications.

A novel feature of this approach is that the applied problem inspires the
mathematical theory, rather than the applied problem being presented after
the relevant mathematics has been learned. Our goal is for students to
organically experience the relevance and importance of the abstract ideas of
linear algebra to real problems. We also want to give students a taste of
research mathematics. Our explorations ask students to make conjectures and
answer open-ended questions; we hope they demonstrate for students the
living process of mathematical discovery.

Because of the application-inspired nature of the text, we created a path
through introductory linear algebra material to naturally arise in the process
of investigating two data applications. This led to a couple key content
differences from many standard introductory linear algebra texts. First, we
introduce vector spaces very early on as the appropriate settings for our
problems. Second, we approach eigenvalue computations from an
application/computation angle, offering a determinant-free method as well as
the typical determinant method for calculating eigenvalues.

Although we have focused on two central applications that inspire the
development of the linear algebra ideas in this text, there are a wide array of
other applications and mathematical paths, many of which relate to data
applications, that can be modeled with linear algebra. We have included “sign
posts” for these applications and mathematical paths at moments where the
reader has learned the necessary tools for exploring the application or math-
ematical path. These applications and mathematical paths are separated into
three main areas: Data and Image Analysis (including Machine Learning),
Dynamical Modeling, and Optimization and Optimal Design.

vii
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Outline of Text

In Chapter 1 we outline some of the fundamental ways that linear algebra is
used in our world. We then introduce, with more depth, the applications of
radiography/tomography, diffusion welding, and heat warping of images,
which will frame our discussion of linear algebra concepts throughout the
book.

Chapter 2 introduces systems of equations and vector spaces in the context
of the applications. The chapter begins with an exploration (Section 2.1) of
image data similar to what would be used for radiographs or the reconstructed
images of brain slices. Motivated by a question about combining images,
Section 2.2 outlines methods for solving systems of equations. (For more
advanced courses, this chapter can be skipped.) In Section 2.3, we formalize
properties of the set of images (images can be added, multiplied by scalars,
etc.) and we use these properties to define a vector space. While Section 2.3
focuses on the vector spaces of images and Euclidean spaces, Section 2.4
introduces readers to a whole host of new vector spaces. Some of these (like
polynomial spaces and matrix spaces) are standard, while other examples
introduce vector spaces that arise in applications, including heat states, 7-bar
LCD digits, and function spaces (including discretized function spaces).
We conclude the chapter with a discussion of subspaces (Section 2.5), again
motivated by the setting of images.

Chapter 3 delves into the fundamental ideas of linear combinations, span,
and linear independence, and concludes with the development of bases and
coordinate representations for vector spaces. Although the chapter does not
contain any explorations, it is heavily motivated by explorations from the
previous chapter. Specifically, the goal of determining if an image is an
arithmetic combination of other images (from Section 2.1) drives the defi-
nition of linear combinations in Section 3.1, and also adds context to the
abstract concepts of the span of a set of vectors (Section 3.2) and linear
independence (Section 3.3). In Sections 3.4 and 3.5, we investigate how
linearly independent spanning sets (bases) in the familiar spaces of images
and heat states are useful for defining coordinates on those spaces. This
allows us to match-up images and heat states with vectors in Euclidean
spaces of the same dimension. We conclude the chapter with a “sign post” for
regression analysis.

Chapter 4 covers linear transformations. In Section 4.1, readers are taken
through an exploration of the radiographic transformation beginning with a
definition of the transformation. Next, they use coordinates to represent this
transformation with a matrix, and in Section 4.2, they investigate transfor-
mations more generally. In Section 4.3 readers see how the heat diffusion
operator can be represented as a matrix, and in Section 4.4 they explore more
generally how to represent arbitrary transformations between vector spaces
by matrices of real numbers. In Section 4.6, the reader will return to the
radiographic transformation and explore properties of the transformation,
considering whether it is possible for two objects to produce the same
radiograph, and whether there are any radiographs that are not produced by
any objects. This exploration leads to the definitions of one-to-one and onto



Preface

linear transformations in Section 4.7. This is also where the critical idea of
invertibility is introduced; in the radiographic transformation setting, if the
transformation is invertible then reconstruction (tomography) is possible.

The goal of Chapter 5 is to understand invertibility so that we can solve
inverse problems. In Section 5.1 readers consider what would happen if the
radiographic transformation is not invertible. This leads to a study of sub-
spaces related to the transformations (nullspace and range space). The section
concludes with the rank-nullity theorem. In Section 5.2, the corresponding
ideas for matrix representations of transformations (nullspace, row space, and
column space) are discussed along with the introduction of the Invertible
Matrix Theorem. In Section 5.3 the reader will reconstruct brain slice images
for certain radiographic setups after developing the concept of a left inverse.
We conclude this chapter with a “sign post” for linear programming.

Chapter 6 introduces eigenvector and eigenvalue concepts in preparation
for simplifying iterative processes. Section 6.1 revisits the heat diffusion
application. In this exploration, readers examine a variety of initial heat
states, and observe that some heat states have a simple evolution while others
do not. Combining this with the linearity of the diffusion operator leads to the
idea of creating bases of these simple heat states. Section 6.2 formalizes the
ideas of the previous heat diffusion exploration and introduces eigenvectors,
eigenvalues, eigenspaces, and diagonalization. Using these constructs, in
Section 6.3 readers, again, address the long-term behavior of various heat
states, and start to make connections to other applications. We follow the
application with Section 6.4 where we present many more applications
described by repeated matrix multiplication or matrix/vector sequences.
Within this chapter are “sign posts” for Fourier analysis, nonlinear opti-
mization and optimal design, and for dynamical processes.

Chapter 7 includes the discussion on how to find suitable solutions to
inverse problems when invertibility is not an option. In Section 7.1, moti-
vated by the idea of determining the “degree of linear independence” of a set
of images, readers will be introduced to the concepts of inner product and
norm in a vector space. This chapter also develops the theory of orthogo-
nality. Section 7.2 uses orthogonality to define orthogonal projections in
Euclidean space along with general projections. The tools built here are then
used to construct the Gram-Schmidt Process for producing an orthonormal
basis for a vector space. In Section 7.3, motivated by ideas from earlier
tomography explorations, we develop orthogonal transformations and related
properties of symmetric matrices. Section 7.4 is an exploration in which the
reader will learn about the concepts of maximal isomorphisms and
pseudo-invertibility. In Section 7.5, readers will combine their knowledge
about diagonalizable and symmetric transformations and orthogonality to
more efficiently invert a larger class of radiographic transformations using
singular value decomposition (SVD). The Final exploration, in Section 7.6,
makes use of SVD to perform brain reconstructions. Readers will discover
that SVD works well with clean data, but poorly for noisy data. At the end of
this section, readers explore ideas for nullspace enhancements to reconstruct
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brain images from noisy data. This final section is set up so that the reader
can extend their knowledge of Linear Algebra in a grand finale exploration
reaching into an active area of inverse problem research. Also included
throughout Chapter 7 are “sign posts” for data analysis tools, including
support vector machines, clustering, and principle component analysis.

Finally, Chapter 8 wraps up the text by describing the exploratory nature
of applied mathematics and encourages the reader to continue using similar
techniques on other problems.

Using This Text

The text is designed around a semester-long course. For a first course in
Linear Algebra, we suggest including Chapters 1-6 with selected topics from
Chapter 7 as time allows. Although the heat diffusion application is not fully
resolved until Section 6.3 and the tomography application is not fully
resolved until Section 7.6, one could reasonably conclude a 1-semester
course after Section 6.2. At that point, some (relatively elementary) brain
images have been reconstructed from radiographic data, a good exploration
of Heat Diffusion has completed a study of Eigenvectors and Diagonaliza-
tion, and tomography has motivated ideas that will lead to inner product,
vector norm, projection, and the Gram-Schmidt Process. An outline from an
example of our introductory courses is included on page xi.

Chapter 8 can be a great source of ideas for student projects. We
encourage anyone using this text to consider applications discussed there.

This text has also been used for a more advanced second course in Linear
Algebra. In this scenario, the instructor can move more rapidly through the
first three chapters highlighting connections with the applications. The course
could omit Sections 5.3 and 6.3 in order to have adequate time to complete
the tomographic explorations in Chapter 7. Such a course could additionally
include the derivation of the diffusion equation in Appendix B and/or a
deeper understanding of radiographic transformations described in
Appendix A.

Exercises

As mathematics is a subject best learned by doing, we have included exer-
cises of a variety of types at many levels: concrete practice/computational,
theoretical/proof-based, application-based, application-inspired/inquiry, and
open-ended discussion exercises.

Computational Tools

One of the powerful aspects of Linear Algebra is its ability to solve
large-scale problems arising in data analysis. We have designed our explo-
rations to highlight this aspect of Linear Algebra. Many explorations include
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Chapter
Ch 1
Ch2

Ch3

Ch 4

Ch 5

Ch 6

Ch 7

Sections

§2.1
§2.2
§2.3
§2.4
§2.5

§3.1
§3.2
§3.3
§3.4
§3.5

§4.1
§4.2
§4.3
§4.4
§4.5
§4.6
§4.7

§5.1
§5.2
§5.3

§6.1
§6.2
§6.3
§6.4

§7.1
§7.2

Title # of (50-min) Classes
Introduction to Applications 1 Class

Vector Spaces

Exploration: Digital Images 1 Class

Systems of Equations 2 Classes

Vector Spaces 1 Class

Vector Space Examples 1 Classes

Subspaces 2 Classes

Vector Space Arithmetic and Representations

Linear Combinations 2 Classes
Span 2 Classes
Linear Independence 2 Classes
Bases 2 Classes
Coordinates 1 Class

Linear Transformations

Exploration: Computing Radiographs 2 Classes
Linear Transformations 2 Classes
Exploration: Heat Diffusion 1 Class
Matrix Representations of Linear Transformations

The Determinant of a Matrix 1 Class
Exploration: Tomography 1 Class
Transformation Properties (1-1 and Onto) 3 Classes
Invertibility

Transformation Spaces 2 Classes
The Invertible Matrix Theorem 1 Class
Exploration: Tomography Without an Inverse 1 Class
Diagonalization

Exploration: Heat State Evolution 1 Class
Eigenspaces 3 Classes
Exploration: Diffusion Welding 1 Class
Markov Processes 1 Class

Inner Product Spaces
Inner Products 1 Class

Projections 1 Class

code for students to run in either MATLAB or the free, open-source software
Octave. In most cases, the code can be run in online programming envi-
ronments, eliminating the need for students to install software on their own
computers.

Ancillary Materials

Readers using this text are invited to visit our website (www.imagemath.org)
to access data sets and code for explorations. Instructors are able to create an
account at our website so that they can download ancillary materials.


https://www.imagemath.org

Xii
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Materials available to instructors include all code and data sets for the
explorations and instructor notes and expected solution paths for the
explorations.

Pullman, USA Heather A. Moon
Pullman, USA Thomas J. Asaki
Gambier, USA Marie A. Snipes
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