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Preface

Since the 60s, it is well known that the microscopical mixture (or more exactly

mesoscopic mixture) of two or more materials allows us to obtain other materials

whose behavior is very different from the original. This does not only depend on

the proportion of each material used in the mixture but also on their geometrical

dispositions in the mixture. The branch of mathematics dealing with this problem is

the homogenization theory that began with the pioneering works of E. De Giorgi,

Z. Hashin, F. Murat, E. Sánchez-Palencia, S. Shtrikman, S. Spagnolo, L. Tartar,...

Among his achievements, we mention a general compactness result showing that

the limit of the solutions of a sequence of second-order linear elliptic equations with

uniformly bounded, and uniformly coercive coefficients converge to the solution of

a problem of the same type. It allows us to describe the new materials as the limit

of a sequence of mixtures of the original ones. These results have been extended

to the elasticity system, evolutive equations, equations with unbounded and/or non-

uniformly elliptic coefficients, nonlinear equations,...

One of the main applications of these results is the study of the optimal arrange-

ment of several materials in order to minimize a certain functional. In this sense

we recall that some counterexamples due to F. Murat show that the problem has no

solution in general and therefore the need of working with a relaxed formulation. The

main idea to get this relaxed formulation is to deal with general mixtures obtained

through the limit process mentioned above. Moreover, the relaxed formulation is

easier to handle from the point of view of the numerical analysis due to its convexity

and derivability properties.

Our purpose in this work is to carry out an introduction to the application of

the homogenization theory to the optimal design of diffusion materials (electric of

thermic) obtained as the mixture of some given components (multi-phase materials).

In the corresponding control problem, these materials are represented through the

coefficients of a second-order linear elliptic equation. The functional to minimize

depends on the proportion of the materials used in the mixture and the solution to the

partial differential problem. This has been carried out in some very good bibliogra-

phies such as G. Allaire’s book: shape optimization by the homogenization Method,

Springer, 2002 and the references therein. Here, we are mainly interested in the case
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viii Preface

of a functional, which is not continuous with respect to the state and flux functions in

the weak topology of H 1
0 (Ω) × L2(Ω)N . This is the case of functionals that depend

nonlinearly of the gradient of the state function. It causes that the functional changes

its form in the relaxed formulation. We show that it still admits an integral representa-

tion but it is not explicit in general. However, we get some interesting properties such

as a partial convexity and an explicit formula for the value of the relaxed functional

in the boundary of its domain. Assuming further conditions, we also get upper and

lower bounds and even in very particular cases, a representation in the whole of its

domain.

A major difficulty arising from not having an explicit representation of the

relaxed functional is the numerical resolution of the problem. We present some

strategies, which use an upper or a lower approximation of the functional. We show

the convergence of discrete versions of the problem where the relaxed materials are

constant in the elements of a mesh, and the corresponding Sobolev space is replaced

by a Galerkin approximation. Assuming some smoothness conditions on the relaxed

functional (or more exactly in the approximation used in the numerical method),

which can be proved to hold in several important examples, we provide a descend

algorithm based on the convexity properties of the control set. The smoothness

assumptions on the functional also allow us to get a system of optimality conditions

and to deduce some qualitative properties of the solutions.

In the last chapter of the book, we make a short introduction to the case of multistate

problems, i.e. to the case where there are more than one state equation. From the

application point of view, this means that we want to construct a material which works

well in several situations. Now, even in the case of functionals that do not depend on

the gradient, we find the difficulty that a complete description of the set of materials

obtained by the homogenization process is only known in very few cases. The most

important example is the mixture of two isotropic materials. In the case of a unique

state equation, only a partial knowledge of this set is necessary. If the functional

depends nonlinearly on the gradient of the state functions, and there are an infinite

number of state equations, then it is not clear that the relaxed functional admits an

integral representation. This is due to a lack of compactness. Similar considerations

also hold for the case of evolutive problems that we briefly discuss.

A more detailed description of the content of each chapter is carried out in its

corresponding abstract.

Each chapter contains a bibliographic section with references to previous works.

Most of the new results in the present book are a continuation of previous

works and discussions with other colleagues: J. Couce-Calvo, J. Castro, F. Murat,

J. D. Martín-Gómez, M. Luna-Laynez, E. Zuazua. My sincere thanks to all of them.

This book has been partially supported by the project “MTM2017-83583-P” of

the “Ministerio de Economa, industria y competitividad” of Spain.

Seville, Spain

January 2022

Juan Casado-Díaz



Notations

• Ω denotes a bounded open set of R
N .

• Ck
c (Ω) with 0 ≤ k ≤ ∞ denotes the space of functions of class Ck in Ω with

compact support. Ck
0 (Ω) is the closure of Ck

c (Ω) in Ck(Ω).
• Lp(Ω), with 1 ≤ p ≤ ∞ denotes the usual Lebesgue spaces.
• W 1,p(Ω) denotes the space of functions in Lp(Ω) with distributional derivative

in Lp(Ω). The closure of C∞
c (Ω) in W 1,p(Ω) is denoted by W

1.p

0 (Ω). In the case

p = 2 we use the notations H 1(Ω) = W 1,2(Ω) and H 1
0 (Ω) = W

1,2
0 (Ω).

• M (Ω) denotes the space of bounded Radon measures in Ω . It can be identified

with the dual C0
0 (Ω). M (Ω) denotes the space of Radon measures in Ω . It can

be identified with the dual C0(Ω).
• For a set ω ⊂ R

N , we denote by χω the characteristic function of ω.
• The Lebesgue measure of a set ω ⊂ R

N is denoted by |ω|.
• The open ball of center x and radius r > 0 in R

N is denoted by B(x, r). For the

closed ball we use B(x, r).
• The unit sphere in R

N is denoted by SN−1.
• For a vector ξ ∈ R

N we denote by ξi its i-th component. Analogously the

coefficients of a matrix M are denoted by Mij.

• The scalar product of two vectors ξ, η ∈ R
N is denoted as ξ · η =

∑N
i=1ξiηi. The

scalar product of two matrix M , L ∈ R
N×N is denoted by M : L =

∑N
i,j=1MijLij.

• For two vectors ξ, η ∈ R
N , we write ξ ≤ η if ξi ≤ ηi, 1 ≤ i ≤ N .

• For two symmetric matrices A, B ∈ R
N×N , we write A ≤ B if B−A is nonnegative.

• The tensorial product ξ ⊗ η of two vectors ξ, η ∈ R
N is the matrix in R

N×N of

coefficients (ξ ⊗ η)ij = ξiηj. The symmetric tensorial product of ξ, η is defined

by ξ ⊙ η = (ξ ⊗ η + η ⊗ ξ)/2.
• The transposed of a matrix M is denoted by M t .
• The kernel and the range of a matrix M are respectively denoted by Ker(M ) and

Ran(M ).
• The spectrum of a matrix M ∈ R

N×N is denoted by Sp(M ).
• O+ is the set of the orthogonal matrices in R

N with determinant equals to 1.
• {e1, . . . , em} is the canonical basis of R

m.
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x Notations

• Tm is the convex hull of {e1, . . . , em}, i.e.

Tm = {(p1, . . . , pm) ∈ R
m : 0 ≤ pi, p1 + · · · + pm = 1}.

• Y is the unitary cube in R
N , Y = (0, 1)N .

• The index ♯ means periodicity. For example, L
p

♯(Y ) is the space of functions in

L
p

loc(R
N ) which are periodic of period Y .

• For a set X and a function F : X → (−∞,∞], we define the domain of F and

we denote it by D(F), as the set of x ∈ X such that F(x) < ∞.
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