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Preface

Multivariate statistical analysis often proves to be a challenging subject for students. The
difficulty arises in part from the reliance on several types of symbols such as subscripts,
superscripts, bars, tildes, bold-face characters, lower- and uppercase Roman and Greek
letters, and so on. However, resorting to such notations is necessary in order to refer to
the various quantities involved such as scalars and matrices either in the real or complex
domain. When the first author began to teach courses in advanced mathematical statistics
and multivariate analysis at McGill University, Canada, and other academic institutions
around the world, he was seeking means of making the study of multivariate analysis
more accessible and enjoyable. He determined that the subject could be made simpler
by treating mathematical and random variables alike, thus avoiding the distinct notation
that is generally utilized to represent random and non-random quantities. Accordingly, all
scalar variables, whether mathematical or random, are denoted by lowercase letters and
all vector/matrix variables are denoted by capital letters, with vectors and matrices being
identically denoted since vectors can be viewed as matrices having a single row or column.
As well, variables belonging to the complex domain are readily identified as such by plac-
ing a tilde over the corresponding lowercase and capital letters. Moreover, he noticed that
numerous formulas expressed in terms of summations, subscripts, and superscripts could
be more efficiently represented by appealing to matrix methods. He further observed that
the study of multivariate analysis could be simplified by initially delivering a few lec-
tures on Jacobians of matrix transformations and elementary special functions of matrix
argument, and by subsequently deriving the statistical density functions as special cases of
these elementary functions as is done for instance in the present book for the real and com-
plex matrix-variate gamma and beta density functions. Basic notes in these directions were
prepared and utilized by the first author for his lectures over the past decades. The second
and third authors then joined him and added their contributions to flesh out this material
to full-fledged book form. Many of the notable features that distinguish this monograph
from other books on the subject are listed next.
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Special Features

1. As the title of the book suggests, its most distinctive feature is its development of a
parallel theory of multivariate analysis in the complex domain side by side with the cor-
responding treatment of the real cases. Various quantities involving complex random vari-
ables such as Hermitian forms are widely used in many areas of applications such as light
scattering, quantum physics, and communication theory, to name a few. A wide reader-
ship is expected as, to our knowledge, this is the first book in the area that systematically
combines in a single source the real results and their complex counterparts. Students will
be able to better grasp the results that are holding in the complex field by relating them to
those existing in the real field.

2. In order to avoid resorting to an excessive number of symbols to denote scalar, vector,
and matrix variables in the real and complex domains, the following consistent notations
are employed throughout the book: All real scalar variables, whether mathematical or ran-
dom, are denoted by lowercase letters and all real vector/matrix variables are denoted by
capital letters, a tilde being placed on the corresponding variables in the complex domain.

3. Mathematical variables and random variables are treated the same way and denoted
by the same type of letters in order to avoid the double notation often utilized to rep-
resent random and mathematical variables as well as the potentially resulting confusion.
If probabilities are to be attached to every value that a variable takes, then mathematical
variables can be construed as degenerate random variables. This simplified notation will
enable students from mathematics, physics, and other disciplines to easily understand the
subject matter without being perplexed. Although statistics students may initially find this
notation somewhat unsettling, the adjustment ought to prove rapid.

4. Matrix methods are utilized throughout the book so as to limit the number of summa-
tions, subscripts, superscripts, and so on. This makes the representations of the various
results simpler and elegant.

5. A connection is established between statistical distribution theory of scalar, vector, and
matrix variables in the real and complex domains and fractional calculus. This should
foster further growth in both of these fields, which may borrow results and techniques
from each other.

6. Connections of concepts encountered in multivariate analysis to concepts occurring in
geometrical probabilities are pointed out so that each area can be enriched by further work
in the other one. Geometrical probability problems of random lengths, random areas, and
random volumes in the complex domain may not have been developed yet. They may now
be tackled by making use of the results presented in this book.
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7. Classroom lecture style is employed as this book’s writing style so that the reader has
the impression of listening to a lecture upon reading the material.

8. The central concepts and major results are followed by illustrative worked examples so
that students may easily comprehend the meaning and significance of the stated results.
Additional problems are provided as exercises for the students to work out so that the
remaining questions they still may have can be clarified.

9. Throughout the book, the majority of the derivations of known or original results are
innovative and rather straightforward as they rest on simple applications of results from
matrix algebra, vector/matrix derivatives, and elementary special functions.

10. Useful results on vector/matrix differential operators are included in the mathematical
preliminaries for the real case, and the corresponding operators in the complex domain are
developed in Chap. 3. They are utilized to derive maximum likelihood estimators of vec-
tor/matrix parameters in the real and complex domains in a more straightforward manner
than is otherwise the case with the usual lengthy procedures. The vector/matrix differential
operators in the complex domain may actually be new whereas their counterparts, the real,
case may be found in Mathai (1997) [see Chapter 1, reference list].

11. The simplified and consistent notation of dX is used to denote the wedge product
of the differentials of all functionally independent real scalar variables in X, whether X
is a scalar, a vector, or a square or rectangular matrix, with dXx being utilized for the
corresponding wedge product of differentials in the complex domain.

12. Equation numbering is done sequentially chapter/section-wise; for example, (3.5.4)
indicates the fourth equation appearing in Sect. 5 of Chap. 3. To make the numbering
scheme more concise and descriptive, the section titles, lemmas, theorems, exercises, and
equations pertaining to the complex domain will be identified by appending the letter ‘a’
to the respective section numbers such as (3.5a.4). The notation (1), (i1), ..., is employed
for neighboring equation numbers related to a given derivation.

13. References to the previous materials or equation numbers as well as references to sub-
sequent results appearing in the book are kept a minimum. In order to enhance readability,
the main notations utilized in each chapter are repeated at the beginning of each one of
them. As well, the reader may notice certain redundancies in the statements. These are
intentional and meant to make the material easier to follow.

14. Due to the presence of numerous parameters, students generally find the subject of
factor analysis quite difficult to grasp and apply effectively. Their understanding of the
topic should be significantly enhanced by the explicit derivations that are provided, which
incidentally are believed to be original.
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15. Only the basic material in each topic is covered. The subject matter is clearly dis-
cussed and several worked examples are provided so that the students can acquire a clear
understanding of this primary material. Only the materials used in each chapter are given
as reference—mostly the authors’ own works. Additional reading materials are listed at
the very end of the book. After acquainting themselves with the introductory material pre-
sented in each chapter, the readers ought to be capable of mastering more advanced related
topics on their own.

Multivariate analysis encompasses a vast array of topics. Even if the very primary ma-
terials pertaining to most of these topics were included in a basic book such as the present
one, the length of the resulting monograph would be excessive. Hence, certain topics had
to be chosen in order to produce a manuscript of a manageable size. The selection of the
topics to be included or excluded is authors’ own choice, and it is by no means claimed
that those included in the book are the most important ones or that those being omitted
are not relevant. Certain pertinent topics, such as confidence regions, multiple confidence
intervals, multivariate scaling, tests based on arbitrary statistics, and logistic and ridge re-
gressions, are omitted so as to limit the size of the book. For instance, only some likelihood
ratio statistics or A-criteria based tests on normal populations are treated in Chap. 6 on tests
of hypotheses, whereas the authors could have discussed various tests of hypotheses on pa-
rameters associated with the exponential, multinomial, or other populations, as they also
have worked on such problems. As well, since results related to elliptically contoured dis-
tributions including the spherically symmetric case might be of somewhat limited interest,
this topic is not pursued further subsequently to its introduction in Chap. 3. Nevertheless,
standard applications such as principal component analysis, canonical correlation analysis,
factor analysis, classification problems, multivariate analysis of variance, profile analysis,
growth curves, cluster analysis, and correspondence analysis are properly covered.

Tables of percentage points are provided for the normal, chisquare, Student-7, and F
distributions as well as for the null distributions of the statistics for testing the indepen-
dence and for testing the equality of the diagonal elements given that the population co-
variance matrix is diagonal, as they are frequently required in applied areas. Numerical
tables for other relevant tests encountered in multivariate analysis are readily available in
the literature.

This work may be used as a reference book or as a textbook for a full course on mul-
tivariate analysis. Potential readership includes mathematicians, statisticians, physicists,
engineers, as well as researchers and graduate students in related fields. Chapters 1-8 or
sections thereof could be covered in a one- to two-semester course on mathematical statis-
tics or multivariate analysis, while a full course on applied multivariate analysis might
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focus on Chaps. 9—15. Readers with little interest in complex analysis may omit the sec-
tions whose numbers are followed by an ‘a’ without any loss of continuity. With this book
and its numerous new derivations, those who are already familiar with multivariate anal-
ysis in the real domain will have an opportunity to further their knowledge of the subject
and to delve into the complex counterparts of the results.

The authors wish to thank the following former students of the Centre for Mathemat-
ical and Statistical Sciences, India, for making use of a preliminary draft of portions of
the book for their courses and communicating their comments: Dr. T. Princy, Cochin Uni-
versity of Science and Technology, Kochi, Kerala, India; Dr. Nicy Sebastian, St. Thomas
College, Calicut University, Thrissur, Kerala, India; and Dr. Dilip Kumar, Kerala Univer-
sity, Trivandrum, India. The authors also wish to express their thanks to Dr. C. Satheesh
Kumar, Professor of Statistics, University of Kerala, and Dr. Joby K. Jose, Professor of
Statistics, Kannur University, for their pertinent comments on the second drafts of the
chapters. The authors have no conflict of interest to declare. The second author would like
to acknowledge the financial support of the Natural Sciences and Engineering Research
Council of Canada.

Montreal, ON, Canada Arak M. Mathai
London, ON, Canada Serge B. Provost
Vienna, Austria Hans J. Haubold

July 1,2022
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