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Preface to the Second Edition

The idea of the second edition was originally motivated by improvement of certain
notation within the chapters and correcting various typos suggested by the readers.
However during this work I decided to add several interesting theorems that were
missing in the first edition. For the convenience of the readers who are familiar with
the first edition I would like to underline here the main changes that were made. My
intention was not to overload the book with new topics but rather to improve the
exposition of the existing ones.

First of all in Section 1.3 we relate partial numerators and partial denominators
to the classical notion of continuants. We supplement numerous formulae via
expressions in terms of continuants further in the text.

We have added a criterion of rational angles congruence in Subsection 2.1.8 and
of integer triangle convergence (Proposition 6.7).

In the new Section 2.5 and Section 18.6 we show the classification of integer-
regular polygons and polyhedra respectively.

We have included an explicit expression for LLS sequences of adjacent angles in
terms of certain long continued fractions (see Section 5.5).

Two algorithms to compute LLS sequences are added to Chapter 4 (see Sec-
tion 4.5).

Finally, the chapter on Gauss Reduction Theory (Chapter 7 of the first edition of

the book) was a subject of the major metamorphose. It was substantially revised and
split into several new chapters:

Markov numbers are discussed in a separate Chapter 7 now.

The section on geometry of continued fractions is substantially extended to new
Chapter 8. In particular we have added a new technique of computation of LLS
sequence periods for GL(2,7Z) matrices.

Chapter 9 on continuant representations of GL(2,7) matrices is new. It is very
much in the spirit of Gauss Reduction Theory.
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e The semigroup of reduced matrices is discussed separately in Chapter 10.

* The remaining material (of Chapter 7 of the first edition of the book) is now
placed in Chapter 11: here we have added proofs for elliptic and parabolic matri-
ces and revised the main case of the hyperbolic matrices. Additionally we have
extended the exposition to the group GL(2,Z) (originally it was mostly regarding
SL(2,7)).

Further examples and exercises were added to different chapters of the book.

University of Liverpool Oleg Karpenkov
February 2022
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Preface to the First Edition

Continued fractions appear in many different branches of mathematics: the the-
ory of Diophantine approximations, algebraic number theory, coding theory, toric
geometry, dynamical systems, ergodic theory, topology, etc. One of the metamathe-
matical explanations of this phenomenon is based on an interesting structure of the
set of real numbers endowed with two operations: addition a + b and inversion 1/b.
This structure appeared for the first time in the Euclidean algorithm, which was
known several thousand years ago. Similarly to the structures of fields and rings
(with operations of addition a + b and multiplication a * b), structures with addition
and inversion can be found in many branches of mathematics. That is the reason why
continued fractions can be encountered far away from number theory. In particular,
continued fractions have a geometric interpretation in terms of integer geometry,
which we place as a cornerstone for this book.

The main goal of the first part of the book is to explore geometric ideas behind
regular continued fractions. On the one hand, we present geometrical interpretation
of classical theorems, such as the Gauss—Kuzmin theorem on the distribution of el-
ements of continued fractions, Lagrange’s theorem on the periodicity of continued
fractions, and the algorithm of Gaussian reduction. On the other hand, we present
some recent results related to toric geometry and the first steps of integer trigonom-
etry of lattices. The first part is rather elementary and will be interesting for both
students in mathematics and researchers. This part is a result of a series of lecture
courses at the Graz University of Technology (Austria). The material is appropriate
for master’s and doctoral students who already have basic knowledge of linear alge-
bra, algebraic number theory, and measure theory. Several chapters demand certain
experience in differential and algebraic geometry. Nevertheless, I believe that it is
possible for strong bachelor’s students as well to understand this material.

In the second part of the book we study an integer geometric generalization of
continued fractions to the multidimensional case. Such a generalization was first
considered by F. Klein in 1895. Later, this subject was almost completely abandoned
due to the computational complexity of the structure involved in the calculation
of the generalized continued fractions. The interest in Klein’s generalization was

ix



X Preface to the First Edition

revived by V.I. Arnold approximately one hundred years after its invention, when
computers became strong enough to overcome the computational complexity. After
a brief introduction to multidimensional integer geometry, we study essentially new
questions for the multidimensional cases and questions arising as extensions of the
classical ones (such as Lagrange’s theorem and Gauss—Kuzmin statistics). This
part is an exposition of recent results in this area. We emphasize that the majority of
examples and even certain statements of this part are on two-dimensional continued
fractions. The situation in higher dimensions is more technical and less studied,
and in many cases we formulate the corresponding problems and conjectures. The
second part is intended mostly for researchers in the fields of algebraic number
theory, Diophantine equations and approximations, and algebraic geometry. Several
chapters of this part can be added to a course for master’s or doctoral students.

Finally, I should mention many other interesting generalizations of continued
fractions, coming from algorithmic, dynamical, and approximation properties of
continued fractions. These generalizations are all distinct in higher dimensions. We
briefly describe the most famous of them in Chapter 27.

University of Liverpool Oleg Karpenkov
February 2013
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