

Farzin Asadi

Digital Circuits Laboratory Manual

Synthesis Lectures on Electrical Engineering

This series of short books covers a broad spectrum of titles of interest in electrical engineering that may not specifically fit within another series. Books will focus on fundamentals, methods, and advances of interest to electrical and electronic engineers.

Farzin Asadi

Digital Circuits Laboratory Manual

Farzin Asadi Department of Electrical and Electronics Engineering Maltepe University Istanbul, Türkiye

ISSN 1559-811X ISSN 1559-8128 (electronic) Synthesis Lectures on Electrical Engineering ISBN 978-3-031-41515-9 ISBN 978-3-031-41516-6 (eBook) https://doi.org/10.1007/978-3-031-41516-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

In loving memory of my father Moloud Asadi and my mother Khorshid Tahmasebi, always on my mind, forever in my heart.

Preface

Digital technology pervades almost everything in our daily lives. For example, cell phones and other types of wireless communications, laptops, television, radio, process controls, automotive electronics, consumer electronics, and aircraft navigation, to name only a few applications that depend heavily on digital electronics.

A strong grounding in the fundamentals of digital technology will prepare you for the highly skilled jobs of the future. Understanding the core fundamentals is very important since it enables you to go anywhere.

This book can be used as a laboratory manual for any standard textbook on digital electronics. You can make the circuits on breadboard or you can use a simulation software like Proteus[®] to simulate the circuits.

This book is composed of 11 chapters. Here is a brief summary of each chapter:

Chapter 1 is an Introduction to Digital Systems.

Chapter 2 contains experiments related to Logic Gates and Combinational Logic Circuits.

Chapter 3 contains experiments related to Digital Arithmetic.

Chapter 4 contains experiments related to Multiplexers and De-multiplexers.

Chapter 5 contains experiments related to Encoders and Decoders.

Chapter 6 contains experiments related to Display Information on Seven Segments.

Chapter 7 contains experiments related to Latches, Flip Flops and Shift Registers.

Chapter 8 contains experiments related to Frequency Division with Flip Flops.

Chapter 9 contains experiments related to Counter Circuits.

Chapter 10 contains experiments related to Oscillator Circuits.

Chapter 11 contains experiments related to Analog-to-Digital and Digital-to-Analog Conversion.

I hope that this book will be useful to the readers, and I welcome comments on the book.

Istanbul, Türkiye Farzin Asadi

Contents

1	An Iı	ntroduction to Digital Systems	1
	1.1	Introduction	1
	1.2	Logic Technologies	1
	1.3	Transistor Transistor Logic (TTL)	1
	1.4	Complementary Metal Oxide Semiconductor (CMOS)	5
	1.5	Emitter Coupled Logic (ECL)	6
	1.6	Pin Numbering	6
	1.7	CMOS and TTL Logic Levels	7
	1.8	Schematic Conventions	8
	1.9	Generation of High and Low Signals	9
	1.10	Bouncing Problem	11
	1.11	De-bouncing	11
	1.12	Output Status Monitoring	16
	1.13	Measurement with Cell Phones	18
	1.14	Power Supply for Digital Circuits	19
	1.15	Open Collector Gates	20
	Refer	rences for Further Study	24
2	Logic	c Gates and Combinational Logic Circuits	25
	2.1	Introduction	25
	2.2	Implementation of Logic Gates with Diode and Transistor	28
	2.3	Behavior of Inverter (Not Gate) with Schmitt Trigger Inputs	31
	2.4	Measurement of Lower and Upper Trigger Points	
		with Potentiometer	34
	2.5	Behavior of Inverter Without Schmitt Trigger Inputs	35
	2.6	Measurement of Output Impedance of Gates in High State	38
	2.7	Measurement of Output Impedance of Gates in Low State	39
	2.8	Connecting a Relay to Logic Gates	41
	2.9	Simple Logic Analyzer	43
	2.10	Buffer ICs	44

x Contents

	2.11	Bus Transceiver ICs	47
	2.12	Behavior of Basic Logic Gates	53
	2.13	De Morgan's Rule	58
	2.14	Implementation of Basic Logic Gates with NAND Gate	60
	2.15	Implementation of Basic Logic Gates with NOR Gate	63
	2.16	Conversion of Sine Wave to Square Wave	64
	Refer	rences for Further Reading	66
3	Digit	al Arithmetic	67
	3.1	Introduction	67
	3.2	Adder IC	67
	3.3	BCD Adder Circuit	71
	3.4	2-Bit Multiplier	74
	3.5	Magnitude Comparator IC	76
	3.6	ALU IC	80
	Refer	rences for Further Study	80
4	Mult	iplexer and De-multiplexer	81
	4.1	Introduction	81
	4.2	Multiplexer	81
	4.3	De-multiplexer	86
	4.4	Analog Multiplexer and De-multiplexer	90
	4.5	Measurement of Switch Resistance	97
	4.6	Analog Switch	100
	4.7	Digitally Controlled Voltage Gain	101
	Refer	rences for Further Study	103
5	Encoder and Decoder		105
	5.1	Introduction	105
	5.2	Decimal to Binary Coded Decimal (BCD) Priority Encoder	105
	5.3	Reading a Keypad	108
	5.4	8-Line to 3-Line Binary (Octal) Priority Encoder	109
	5.5	3 × 8 Decoder	111
	5.6	BCD to Decimal Decoder (TTL IC)	115
	5.7	BCD to Decimal Decoder (CMOS IC)	118
	5.8	BCD-to-Binary and Binary-to-BCD Converters	121
	Refer	rences for Further Study	124
6	Displ	lay Information on Seven Segments	125
	6.1	Introduction	125
	6.2	TTL BCD to Common Cathode 7-Segment Decoder	126
	6.3	Counter from 0 to 9	129
	6.4	TTL BCD to Common Anode 7-Segment Decoder	130

Contents xi

	6.5	CMOS BCD to 7-Segment Decoder	132	
	6.6	Binary to BCD and BCD to Binary Converter IC	133	
	Refer	rences for Further Study	135	
7	Latch, Flip Flop and Shift Register			
,	7.1	Introduction	137 137	
	7.1	Commonly Used JK Flip Flops	137	
	7.2	Commonly Used D Flip Flops	141	
	7.4	Commonly Used D Type Data Latches	144	
	7.4	Commonly Used SR Latch	144	
	7.5 7.6	SR Latch with Transistors	145	
			143	
	7.7	Active High SR Latch	147	
	7.8	Active Low SR Latch		
	7.9	De-bouncing with SR Latch	151	
	7.10	Behavior of JK Flip Flops	153	
	7.11	Conversion of JK Flip Flop to T Flip Flop	156	
	7.12	Conversion of JK Flip Flop to D Flip Flop	158	
	7.13	Conversion of D Flip Flop to T Flip Flop	160	
	7.14	De-bouncing with D Flip Flops	162	
	7.15	4-Bit Latch	163	
	7.16	8-Bit Latch	169	
	7.17	Edge Detector Circuits	170	
	7.18	Edge Detection with D Flip Flops	172	
	7.19	Shift Registers	176	
	7.20	74595 Shift Register	176	
	Refer	rences for Further Study	180	
8	Frequency Division with Flip Flops		181	
	8.1	Introduction	181	
	8.2	Frequency Division with D Flip Flop	181	
	8.3	Frequency Division with 4017	186	
	8.4	Frequency Division with 7490	191	
	8.5	Frequency Division with 555	195	
	Refer	rences for Further Study	196	
9				
	9.1	Introduction	197 197	
	9.2	Low Frequency Clock Pulse Generation	197	
	9.3	Single Clock Pulse Generation	197	
	9.3 9.4	4-Bit Binary Counter	203	
	9.4	8-Bit Binary Counter	205	
	9.5 9.6	•	203	
		14-Bit Binary Counter		
	9.7	4-Bit Up/Down Counter	210	

xii Contents

	9.8	CMOS Counter/Divider	215
	Refer	ences for Further Study	221
10		•	222
10	Oscil	lator Circuits	223
	10.1	Introduction	223
	10.2	Square Wave Generation with Transistor	225
	10.3	Square Wave Generation with 555 IC	227
	10.4	Square Wave Generation with NOT Gates	228
	10.5	Pulse Generation with 555 IC	230
	10.6	Non Retriggerable Monostable with 555 IC	232
	10.7	Non Retriggerable Monostable with 74121 IC	236
	10.8	Servomotor Tester with 555 IC	237
	Refer	ences for Further Study	239
11	Anal	og-to-Digital and Digital-to-Analog Converters	241
	11.1	Introduction	241
	11.2	Analog to Digital Conversion with ADC0804	243
	11.3	Increasing the Analog to Conversion Accuracy	245
	11.4	Voltage Level Monitor	246
	11.5	Digital to Analog Conversion with DAC0808	248
		ences for Futher Study	251
	KCICI	chees for runner study	431