NATO Science for Peace and Security Series
D: Information and Communication Security - Vol. 25

Logics and Languages for Reliability and Security

Edited by Javier Esparza Bernd Spanfelner Orna Grumberg

> IOS Press

The NATO Science for Peace and Security Programme

Logics and Languages for Reliability and Security

Edited by

Javier Esparza

Technische Universität München, Germany

Bernd Spanfelner

Technische Universität München, Germany

and

Orna Grumberg

TECHNION - Israel Institute of Technology, Israel

IOS Press

Amsterdam • Berlin • Tokyo • Washington, DC

Published in cooperation with NATO Public Diplomacy Division

Contents

Preface	\
A Gentle Introduction to Formal Verification of Computer Systems by Abstract Interpretation Patrick Cousot and Radhia Cousot	1
Newtonian Program Analysis - An Introduction Javier Esparza and Michael Luttenberger	31
Principles and Applications of Refinement Types Andrew D. Gordon and Cédric Fournet	73
2-Valued and 3-Valued Abstraction-Refinement in Model Checking Orna Grumberg	105
Modal Fixed Point Logics Gerhard Jäger	129
Effective Analysis of Infinite State Stochastic Processes and Games Antonin Kučera	155
Multi-Valued Automata and Their Applications Orna Kupferman	179
Mechanized Semantics Xavier Leroy	195
Using Security Policies to Write Secure Software Andrew C. Myers	225
Models of Higher-Order Computation: Recursion Schemes and Collapsible Pushdown Automata CH.L. Ong	263
Implicit Flows in Malicious and Nonmalicious Code Alejandro Russo, Andrei Sabelfeld and Keqin Li	30
Subject Index	323
Author Index	32

Software-intensive systems are today an integral part of many everyday products. Whilst they provide great benefits in terms of ease of use and allow for new applications, they also impose enormous responsibilities. It is vital to ensure that such applications work correctly and that any data they use remains secure. Increasing the reliability of such systems is an important and challenging research topic in current computer science.

This volume presents a number of papers which formed the basis for lectures at the 2009 summer school Formal Logical Methods for System Security and Correctness.

The topics include: program analysis and verification by abstract interpretation, principles and applications of refinement types, multi-valued automata and their applications, mechanized semantics with applications to program proof and compiler verification and using security policies to write secure software, among others.

This book delivers an interesting and valuable overview of state-of-the-art in logic- and language-based solutions to system reliability and security to anyone concerned with the correct functioning of software systems.

ISBN 978-1-60750-099-5

www.iospress.nl

ISBN 978-1-60750-099-5 (print) ISBN 978-1-60750-100-8 (online) ISSN 1874-6268