

présentée à

Université Scientifique et Médicale de Grenoble Institut National Polytechnique de Grenoble

pour obtenir le grade de

DOCTEUR 45-SCIENCES

par

Guy MAZARÉ

Guy MAZARÉ

OP®

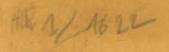
STRUCTURES MULTI - MICROPROCESSEURS

PROBLEMES DE PARALLELISME,

DEFINITION ET EVALUATION D'UN SYSTEME PARTICULIER.

Thèse sontenue le 19 juin 1978 devant le Commission d'Examen :

Président


L. BOLLIET

Examinateurs: F. ANCEAU

H. GALLAIRE

S. KRAKOWIAK A. RECOQUE

J.P. VERJUS

AVANT-PROPOS

SOMMAIRE

INTRODUCTION - LES STRUCTURES MULTI-MICROPROCESSEURS		
1. Apparition des multi-microprocesseurs	p.	5
1.1. Les microprocesseurs	p.	5
1.2. Les structures multi-processeurs	p.	9
1.3. Les multi-microprocesseurs	p.	11
2. Présentation et classification des structures	p.	14
multi-microprocesseurs		
2.1. Intérêts et limites	p.	14
2.2. Les critères de classement	р.	16
2.2.1. Critère n° 1 : le contrôle	p.	18
2.2.2. Critère n° 2 : les communications entre processeurs	р.	19
2.2.3. Critère n° 3 : spécialisation ou banalisation	p.	22
2.3. Le classement	р.	24
2.4. Revue des différents projets multi-microprocesseurs	р.	26
2.4.1. Les systèmes à mémoire centrale, avec ou sans	р.	26
mémoire locale		
2.4.2. Les systèmes à mémoire commune dispersée	p.	32
2.4.3. Les systèmes sans mémoire commune, mais à	р.	37
contrôle hiérarchique		
 2.4.4. Les systèmes sans mémoire commune et à contrôle coopératif 	р.	43
2.5. Principales approches : avantages et inconvénients	p.	48

3. Caractéristiques du système multi-microprocesseur étudi	é	p.
3.1. Motivations et objectifs p		55
3.2. Conséquences p		57
CHAPITRE 1 - LE PARALLÉLISME		
1. Les différentes organisations parallèles p		62
1.1. Décomposition d'un travail en actions parallèles p		62
1.1.1. Cas d'un ensemble d'actions distinctes p		63
1.1.2. Cas d'actions répétitives sur une collection d'objets		65
1.1.3. Combinaison de ces trois organisations parallèles p		70
1.2. Parallélisme ET et parallélisme OU p		71
2. Principaux niveaux de parallélisme p		73
3. Existence du parallélisme interne aux algorithmes p		76
4. Mise en évidence du parallélisme p		87
4.1. Langages d'expression du parallélisme p		88
4.1.1. Généralités et bibliographie p		88
4.1.2. Définition d'un langage adapté au multi-microprocesseu	ır	92
4.2. Détection du parallélisme p		99
4.2.1. Rappel des techniques existantes p		100
4.2.2. Limites et intérêt de ces méthodes p		103
5. Mise en oeuvre du parallélisme p	٠.	107
6. Evaluation du parallélisme p),	112
6.1. Degré de parallélisme p).	112
6.2. Efficacité du parallélisme	١.	115
6.3. Mémoire utilisée et localité p	١.	118
6.4. Méthodologie d'évaluation et outils p).	122

CHAPITRE 2 - DÉFINITION D'UN SYSTÈME MULTI-MICROPROCESSEUR

1.	Organisation des processeurs et des mémoires	р.	132
	1.1. Mémoire centrale	p.	132
	1.2. Processeurs	p.	134
	1.3. Mémoires locales	p.	137
	1.4. Dialogues entre processeurs	p.	138
	1.4.1. Démarrage d'un travail sur un processeur de même type	2	138
	1.4.2. Echanges entre processeurs de types différents	p.	141
	1.4.3. Arrêt d'un processus	p.	144
	1.5. Avantages de ce type de dialogue	p.	145
2.	Réalisation de la mémoire et des connexions		
	processeurs - mémoire	p.	146
	2.1. Mémoire centrale	ρ.	146
	2.2. Connexions processeurs - mémoire	p.	147
	2.3. Mémoires locales et caches	p.	149
	2.4. Problème de cohérence de l'information	p.	152
	2.4.1. Première politique	ρ.	154
	2.4.2. Deuxième politique	p.	155
	2.4.3. Troisième politique	p.	157
3.	Répartition du travail : le mini-O.S.	p.	161
	3.1. Motivations et objectifs	p.	161
	3.2. Liste des primitives du mini-0.S., fonctions et utilisation	ρ.	163
	3.2.1. FORK et JOIN	р.	164
	3.2.2. NFORK et NJOIN	p.	166
	3.2.3. SRF, RFORK, RJOIN	p.	167
	3.2.4. SOLLO et TUTTI	p.	169
	3.2.5. FSFAIS	p.	170
	3.2.6. MABORT		172
	3.2.7. Autres primitives	p.	172
	3.2.7. Autres primitives	p.	1/2

	3.3. Mécanismes du mini-O.S.	p. 173
	3.3.1. Principes généraux	p. 173
	3.3.2. Contrôle de l'exécution	p. 175
	3.3.3. Allocation des compteurs ROR'O	p. 175
	3.3.4. Problème de saturation	p. 177
	3.3.5. SRF et RFORK	p. 178
	3.3.6. Arrêt de branche en activité	p. 178
	3.4. Implémentation de ces mécanismes	p. 179
	3.5. Conclusion : intérêt et limites du mini-0.S.	p. 183
4.	Exécution de langages de haut niveau parallèles	p. 186
	4.1. Caractéristiques essentielles de ces langages	p. 186
	4.2. Accès aux variables des différents niveaux	p. 188
	4.3. Allocation dynamique	p. 192
	4.3.1. ALLOUER - RENDRE	p. 193
	4.3.2. NFORK - NJOIN	p. 193
	4.3.3. SRF - RFORK - RJOIN	p. 193
	4.3.4. FSFAIS	p. 194
	4.3.5. MABORT	p. 197
	4.3.6. Gestion de la partie libre de la zone de travail	p. 197
5.	Mécanismes de protection	p. 199
	5.1. Faisabilité de quelques solutions classiques	p. 200
	5.1.1. Protection mémoire réelle par clefs et verrous	p. 200
	5.1.2. Protection des segments par anneaux	p. 201
	5.2. Systèmes de protection bien adaptés	p. 203
6.	Système d'exploitation	p. 205
	6 1 Organisation générale	n 206

	6.2.	Quelques points délicats	p.	209
		6.2.1. Décentralisation	p.	209
		6.2.2. Affectation des processeurs aux processus	p.	203
		6.2.3. Créations et suppressions de processus ; conséquences		209
		6.2.4. Les verrous	p.	211
	6.3.	Surveillance, détection et reprise	p.	212
		6.3.1. Horloge	p.	212
		6.3.2. Comptabilité	p.	213
		6.3.3. Points d'arrêt et reprises	p.	214
		6.3.4. Processus de garde ; fonctions	ρ.	214
		6.3.5. Processus de garde ; réalisation	p,	215
		6.3.6. Tranches de temps	p.	216
1.	Dégr	adation progressive : détection des erreurs		
	et r	econfiguration	p.	217
	7.1.	Détection par microprogrammes de test	p.	219
	7.2.	Structure à "haute sécurité"	p.	221
		7.2.1. Application au multi-microprocesseur		
		Cas d'un processeur par molécule	p.	222
		7.2.2. Existence de plusieurs processeurs par molécule	p.	225
		7.2.3. Intérêt de ces solutions	p.	227
3.	Résu	mē	p.	228
:H/	APITE	e 3 - ÉVALUATION DU SYSTÈME PROPOSÉ		
١.	Intr	oduction : les problèmes d'efficacité	p.	231
2.	Evai	uations ponctuelles	p.	234
	2.1.	Evaluations "matérielles" : mémoire, cache, processeurs	р.	234
		2.1.1. Le langage LASCAR	p.	235
		2.1.2. Le modèle de la molécule	p.	236
		2.1.3. Résultats	p.	237
	2.2.	Fonctionnement du mini-0.S.	p.	240

2.3. Efficacité des caches	p. 243
2.3,1. Caches invalidés lors des TEST & SET	p. 243
2.3.2. Caches contrôlés par PURGE et UPDATE	p. 244
2.4. Etude de quelques programmes parallèles	p. 249
2.4.1. Motivations et méthodologie	p. 249
2.4.2. Etude du TRI de CP/CMS	p. 252
2.4.3. Programme MAJPAR de SOCRATE	p. 257
2.5. Evaluation du parallélisme existant dans certaines ap	oplications 2
3. Définition d'une expérimentation complète	p. 268
 Motivations et composition de l'expérimentation 	p. 268
3.2. Définition d'une maquette	p. 270
3.2.1. Le processeur	p. 270
3.2.2. Mémoire centrale	p. 271
3.2.3. Caches et processeur molécule	p. 272
3.2.4. Dispositifs d'entrée-sortie	p. 272
3.2.5. Organisation générale	p. 273
3.3. Réalisation de la maquette : émulation	p. 275
3.3.1. Organisation générale	p. 276
3.3.2. Contraintes de l'émulation	p. 278
3.3.3. Emulation par tranches de temps fixes	p. 278
3.3.4. Emulation par événements	p. 279
3.3.5. Remarques générales	p. 281
3.4. Système d'exploitation	p. 282
3.4.1. Organisation générale	p. 282
3.4.2. Le système de la maquette : SPROTO	p. 283
3.5. Langage, applications et mesures	p. 284
CONCLUSION	p. 288
DIDI TOCDARNIC	n. 293