République Algérienne Démocratique et Populaire المستهور وسيدة المستعددة ال

المدرس الوطنية العليا للإعلام الألى الريضاً ((المعهد الوطنى للككوين في الإعلام الألى الريضاً) Ecole nationale Supérieure d'Informatique ex. INI (Institut National de formation en Informatique)

Mémoire de fin d'études

Pour l'obtention du diplôme d'Ingénieur d'Etat en Informatique

Option: Systèmes Informatiques

Thème

CONTROLE DE FEUX DE CIRCULATION DANS UNE ZONE URBAINE

Vers une approche adaptative et coopérative

Réalisé par Encadré par

- Mhamed BOUARIF

- M. Yacine CHALLAL (UTC)

- M. Lyes KHELLADI (CERIST)

Promotion: 2009 / 2010

" Si la grandeur du dessein, la petitesse des moyens, l'immensité de la réussite, sont les trois mesures du génie de l'homme, qui osera comparer humainement un grand homme de l'histoire moderne à **Mohamed** "

Le grand écrivain Français, Alphonse de Lamartine (l'histoire de la Turquie).

RESUME

L'augmentation phénoménale du nombre de véhicules entraîne un encombrement des réseaux routiers qui contribue à la pollution, réduit la productivité et la compétitivité des entreprises, et met en danger la sécurité des usagers. Cette saturation engendre des embouteillages principalement au niveau des intersections. Une solution possible à ce problème, consiste à contrôler d'une manière adaptative les feux de circulation lumineux, suivant la charge de chaque segment routier.

La complexité des solutions de contrôle adaptatif proposées dans la littérature, le besoin d'une stratégie plus fiable et surtout dans le cas des changements rapides des conditions de trafic nécessitent l'investigation de nouveaux systèmes de contrôle de trafic urbain prenant en considération ces fluctuations du trafic dans un réseau d'intersections d'une zone urbaine.

Dans le cadre de ce projet, nous avons réalisé la conception et l'implémentation d'un nouveau système de contrôle adaptatif coopératif pour la régulation du trafic routier dans une zone urbaine. Ceci est assuré par la commande des feux de circulation en se basant sur les informations récoltées en temps réel sur l'état du trafic, et en appliquant l'algorithme de contrôle coopératif que nous avons proposé.

Par ailleurs, nous avons développé un simulateur pour évaluer les performances de notre solution en observant son comportement face à des situations variées du trafic et en faisant une comparaison entre notre solution et une solution non-coopérative basique.

Mots clés:

Contrôle de trafic urbain, Systèmes de transport intelligents, Système de contrôle adaptatif coopératif.

Sommaire

LISTE DES FIGURES	VI
LISTE DES TABLEAUX	VIII
INTRODUCTION	1
CHAPITRE I	5
LES SYSTEMES DE TRANSPORT INTELLIGENTS (ITS)	5
I.1 Introduction	5
I.2 DEFINITION ET HISTORIQUE	5
1.3 OBJECTIFS DES SYSTEMES DE TRANSPORT INTELLIGENTS	6
1.4 LES TECHNOLOGIES DU SOUS-SYSTEME DE SURVEILLANCE D'UN ITS	7
I.5 LES APPLICATIONS DES SYSTEMES DE TRANSPORT INTELLIGENTS	10
i.5.1 Comparaison de quelques applications ITS	13
I.5 CONCLUSION	13
CHAPITRE II	14
LE CONTROLE DE TRAFIC URBAIN DANS UNE INTERSECTION ISOLEE	14
II.1 INTRODUCTION	14
II.2 LES DIFFERENTS TYPES DE STRATEGIES DE CONTROLE	
II.2.1 Contrôle en temps fixe (fixed-time control)	
II.2.2 Contrôle actif (traffic-actuated control)	
II.2.3 Contrôle adaptatif (Traffic-adaptive control)	
II.3 LE MODELE THEORIQUE DU CONTROLE DE TRAFIC	
II.3.1 Notions de base	
II.3.2 Groupe de signal	
II.3.3 Plan de signal	21
II.3.4 L'ensemble des solutions faisables (plans de signal)	23
II.3.5 Contraintes sur le plan de signal	28
II.3.6 fonction d'optimisation	29
II.4 MODELES PRATIQUES:	29
II.4.1 Le besoin d'un modèle pratique	29
II.4.2 Le modèle à base de phases (stage-based)	31
II.4.3 Le modèle à base de mouvement (movement-based)	32
II.4.4 La différence entre movement-based et stage-based	35
II.5 CONCLUSION	36
CHAPITRE III	37
LE CONTROLE DE TRAFIC URBAIN DANS UN RESEAU D'INTERSECTIONS	37
III.1 INTRODUCTION	37
III.2 OBJECTIF DE LA COOPERATION.	
III.3 CLASSIFICATION DES SYSTEMES ADAPTATIFS COOPERATIFS	
III.3.1 Architecture	
III.3.2 Les algorithmes de recherche	
III.3.3 La nature du système (Macroscopique et Microscopique)	
III.4 EXEMPLES DE SYSTEMES COOPERATIFS	
III.4.1 SCOOT (Split Cycle and Offset Optimisation Technique)	

III.4.2 OPAC (Optimized Policies for Adaptive Control)	46
III.4.3 RHODES	50
III.4.4 Modélisation avec système multi-agent SMA	50
III.4.5 Automate Cellulaire CA	52
III.5 CONCLUSION	53
CHAPITRE IV	54
UN NOUVEAU SYSTEME DE COOPERATION	54
IV.1 Introduction	54
IV.2 PRESENTATION DE SCACS (SIMPLIFIED COOPERATIVE ADAPTIVE CONTROL SYSTEM)	55
IV.2.1 Les couches de SCACS	56
IV.2.2 Exemple illustratif	58
IV.3 L'APPORT DU MODELE PROPOSE	62
IV.4 ALGORITHME DE RECHERCHE DANS L'ESPACE DES PHASES AVEC CONTRAINTES	63
IV.4.1 Rappels et Définitions	63
IV.4.2 Entrée - Sortie	65
IV.4.3 Fonction cout de A*	66
IV.4.4 Algorithme	66
IV.4.5 Déroulement de l'algorithme	68
IV.4.6 Discussion de l'algorithme:	71
IV.5 CONCLUSION	72
CHAPITRE V	73
SIMULATION ET EVALUATION DES PERFORMANCES	73
V.1 Introduction	73
V.2 Presentation des simulateurs les plus utilises pour simuler le trafic urbain	
V.2.1 Green Light District	
V.2.2 Paramics et Aimsun	
V.2 Presentation de notre Simulateur NUISim	
V.2.1 Classes de contrôle	
V.2.2 Classes de simulation	
V.3 L'INTERFACE GRAPHIQUE DE NOTRE SIMULATEUR	
V.3.1 Les fonctionnalités offertes à l'utilisateur	82
V.4 LES RESULTATS DE SIMULATION	83
V.4.1 Les indices de performance considérés	84
V.4.2 Démarche de la simulation	84
V.4.3 Résultats de simulation	
V.5 Conclusion	
CONCLUSION GENERALE	94
DÉLÉDENCES:	06