UNIVERSITE PIERRE ET MARIE CURIE PARIS VI

THESE

présentée par

Karim ABBAOUI

Pour obtenir le titre de DOCTEUR DE L'UNIVERSITE PARIS VI dans la spécialité MATHEMATIQUES APPLIQUEES

Sujet de la thèse:

LES FONDEMENTS MATHEMATIQUES DE LA METHODE DECOMPOSITIONNELLE D'ADOMIAN

ET

APPLICATION A LA RESOLUTION
DE PROBLEMES ISSUS DE LA BIOLOGIE
ET DE LA MEDECINE

Thèse soutenue le 04 octobre 1995

Devant le Jury composé de:

Mr Y. CHERRUAULT (Paris VI)

Mr G. ADOMIAN (U.S.A.)

Mr R. ALT (Paris VII)

Mr M. DUVELLEROY (Paris VII)

Mr W. J. FITZGERALD (Cambridge)

Mr A. MEULEMANS (Paris VII)

INTRODUCTION
INTRODUCTION GÉNÉRALE
PARTIE I
CHAPITRE 1
PRESENTATION DE LA METHODE DECOMPOSITIONNELLE ET DE QUELQUES
RAPPELS DE L'ANALYSE COMBINATOIRE
1.1 Introduction 1.1.1. La méthode décompositionnelle 1.2. présentation de la méthode. 1.3. Rappel des résultats déja obtenus 1.3.1 Rappels de quelques formules donnant les A _n . 2.2. 1.4. Rappel de quelques résultats de convergence. 2.4. Rappel de quelques résultats en analyse combinatoire. 2.7. 1.5.1. Rappel sur les partitions d'entiers. 2.7. 1.6. Fonctions génératrices de p(n) et p(n,m) 2.9. 1.6.1. Calcul de p(n,m) pour des petites valeurs de n et k 2.9. 1.7. Polynômes de Bell. 3.3
CHAPITRE 2
LA METHODE DECOMPOSITIONNELLE ET LES EQUATIONS DIFFERENTIELLES ORDINAIRES 2.1 Introduction
2.1 Introduction

CHAPITRE 3	60
CONVERGENCE DE LA METHODE DECOMPOSITIONNELLE APPLIQUEE	
AUX EQUATIONS NON LINEAIRES.	
3.1 Application à quelques équations non linéaires	62
3.3. Estimation de l'erreur de troncature 3.4. Applications numériques	
CHAPITRE 4	70
CONVERGENCE DE LA METHODE DECOMPOSITIONNELLE DANS LE CAS	
GENERAL	
 4.1 Introduction. 4.2. Nouvelles formules pour le calculs des A_n. 4.3. Liste des A_n pour n=0,,5. 4.4. Résultats de convergence 4.5. Estimation de l'erreur de troncature 4.6. Conclusion 	74 76 77 78
CHAPITRE 5 FORMULES POUR LE CALCULS DES POLYNOMES D'ADOMIAN ASSOCIES A DES FONCTIONS DE PLUSIEURS VARIABLES 5.1 Introduction	
5.2. Polynômes d'Adomian pour une fonction à p variables	
5.4.Polynômes d'Adomian pour une fonction à trois variables	89
5.5. Quelques relations entre les polynômes de Bell et les polynômes d'Adomian	
CHAPITRE 6	95
CONVERGENCE DE LA METHODE DECOMPOSITIONNELLE DANS LE	
CADRE DES SYSTEMES D'EQUATIONS DIFFERENTIELLES NON LINEAIRES	

	6.2.La méthode décompositionnelle appliquée aux systèmes d'équations différentielles non	
	linéaires	
	6.4. Théorème fondamental.	
	6.5. Conclusion.	
СН	IAPITRE 7	
LA	METHODE DECOMPOSITIONNELLE APPLIQUEE AUX EQUATIONS	
INT	TEGRALES	
	7.1. Application de la méthode à quelques équations intégrales	107
	7.2. Résultats de convergence.	
	7.3. Comparaison avec la méthode des approximations successives	
	7.4. Applications numériques	
СН	IAPITRE 8	117
LA	DECOMPOSITION ASYMPTOTIQUE	
	8.1. Introduction	.118
	8.2. Application de la décomposition asymptotique à la recherche de solutions particulières	
	8.3. Applications numériques	. 121
	8.4.1. Application numérique	
_		
Pa	artie II	
	PLICATION A LA RESOLUTION DE QUELQUES PROBLEES ISSUS DE LA DLOGIE ET DE LA MEDECINE	
	INTRODUCTION GENERALE	125
СН	HAPITRE 9	
A D	DIICATION A LA DESOLUTION DU MODELE DE MADOUNE	
AP	PLICATION A LA RESOLUTION DU MODELE DE MARCHUK	1.00
	9.1. Introduction à l'immunologie et aux modèles de Marchuk	
	9.1.2. Les constituants basiques de la réponse immunitaire	
	9.1.3. La forme subclinique d'une maladie	

9.1.4. La forme aiguë d'une maladie	133
9.1.5.Interpretation immunologique	134
9.1.6. Diagramme canonique d'une maladie	135
9.1.7. Biostimulation du système immunitaire	136
9.1.8. Problèmes et hypothèses	
9.1.9. Température et réaction de l'organisme	
9.2. Construction du modèle de Marchuk	
9.2.1. Le modèle mathématique simple d'une maladie infectueuse	
9.2.1. Introduction.	
9.2.2. Construction du modèle simple d'une maladie	
9.2.3. Résolution du modèle	
9.2.4. Conclusion.	156
CHAPITRE 10	
APPLICATION A LA RESOLUTION DU MODELE COMPARTIM	ENTAL DE LA
DEGRANULATION DES BASOPHILES	
10.1. Introduction	
10.2 construction du modèle	
10.3. Résolution du modèle	161
CHAPITRE 11 APPLICATION A LA RESOLUTION DE L'EQUATION G MICHAELIS-MENTEN	ENERALISEE DE
11.1. Introduction	166
CHAPITRE 12 APPLICATION A LA RESOLUTION DES MODELES DE LO	-
12.1 Introduction	
12.2. Résolution des modèles	
12.3. Applications numériques	177

CHAPITRE 13	
APPLICATION A L'IDENTIFICATION ET AU CONTROLE OPTIM	IAL.
13.1.Application à l'identification	181
13.2. Application au contrôle optimal des systèmes	183
CONCLUSION GENERALE	186
REFERENCES	
REFERENCES	195