République Algérienne Démocratique et populaire

Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique

UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE

D'ORAN (U.S.T.O) - Mohamed BOUDIAF

FACULTE DES SCIENCES DEPARTEMENT D'INFORMATIQUE

MEMOIRE DE MAGISTER

Option: Génie Statistique

MODELES DE MARKOV CACHES APPLIQUES A LA RECONNAISSANCE AUTOMATIQUE DE LA PAROLE

Présenté par : Melle . BENAISSA Fadéla

Soutenu le : 20 Novembre 99, devant le jury composé :

Président : M^r. M. BENYETTOU Maître de conférence à L'U.S.T.O

Encadreur : M^r. A. BENYETTOU Maître de conférence à L'U.S.T.O Maître de conférence à L'U.S.T.O Maître de conférence à L'U.S.T.O

Examinateur : M^r.A. TEMMAR Maître de conférence à L'I.T.O

Examinateur : M^r. K. BELKADI Chargé de cours à L'U.S.T.O

* Année Universitaire 1998-1999 *

Sommaire

Introduction générale

Chapitre1:	Chaînes de Markov cachées	. 3
1.1.	Les chaînes de Markov cachées d'ordre un	3
	1.1.1. Exemple introductif	3
	1.1.2. Définition	5
	1.1.3. Les éléments d'un modèle Markovien caché (HMM)	5
1.2.		6
	1.2.1. Enoncé des problèmes	6
	1.2.2. Résolution des problèmes fondamentaux d'un HMM	7
1.3.	Principaux types de HMM	17
	1.3.1. Le modèle ergodique	17
	1.3.2. Le modèle gauche – droite	17
	1.3.3. Commentaire	17
1.4.	Techniques d'implantation	18
	1.4.1. Problème de dépassement (underflow)	18
	1.4.2. Problème de données insuffisantes	18
	1.4.3. Initialisation des HMM	19
	1.4.4. Suite d'observations multiples	20
1.5.	Conclusion	20
Chapitre2 :	La parole et son traitement	21
2.1.	Introduction	21
2.2.	classification phonétique :	21
	2.2.1. voyelles	21
	2.2.1 consonnes	23
	2.2.3. Cas des phonèmes de l'arabe	23
2.3.	modèles de représentation	26
2.4.	Acquisition du signal vocal	27
	2.4.1. Le codage	27
	2.4.2. Le prétraitement	28
2.5.	les méthodes d'analyse	29
	2.51. l'analyse temporelle	29
	2.5.2 l'analyse fréquentielle	30
	2.5.3. les principales méthodes	31
2.6.	les indices de décodage	32
	2.6.1. détection de syllabes	32
	2.6.2 détection de phonèmes	33
2.7.	Conclusion	33

-	_	Reconnaissance automatique de la parole(R.A.P) et chaînes de	e
Mar	kov ca	chées.	34
	3.1.	Généralités	34
		3.1.1. objectif	34
		3.1.2 facteurs de complexité	34
		3.1.3. Les méthodes appliquées	35
		3.1.4. Les approches de RAP	35
	3.2.		38
		3.2.1. Généralités	38
		3.2.2. Principe	38
		3.2.3. l'algorithme LBG	38
		3.2.4. QV des coefficients LPC	39
	3.3.		39
		3.3.1. choix du modèle	40
		3.3.2. des systèmes prototypes	40
	3.4.		41
		3.4.1la construction par niveau (L/B)en programmation dynamic	
		3.4.2. reconnaissance de mots enchaînés par les (HMMs/LB)	45
		3.4.3. des systèmes prototypes	47
	3.5.	<u>.</u>	48
		3.5.1. Modèle HMM en reconnaissance de la parole continue	48
		3.5.2. Modélisation de la durée	49
		3.5.3. Des systèmes prototypes	50
	3.6	Alternatives au Modèle HMM discret	51
		3.6.1 Modèle HMM continu	51
		3.6.2 Modèle HMM semi- continu	53
	3.7	conclusion	54
Cha	pitre4	: Modèls deMarkov cachés du second ordre(HMM2) et extensi	
	4.1	troisième ordre	56
	4.1.	introduction	56
	4.2.		56
		4.2.1. définition	56
		4.2.2. Commentaire	56
	4.3	4.2.3. Modèle équivalent	57
	4.3	Extension de l'algorithme de Viterbi	58
		4.3.1 Réduction de l'ordre	58
	4.4.	4.3.2 l'algorithme de Viterbi pour le second ordre	60
	4.4.	. 6	61
		4.4.1 les fonctions Forward- Backward pour le second ordre 4.4.2. formules de ré- estimation	61
			63
	4.5.	4.4.3. l'algorithme de Baum- Welch pour le second ordre extension des HMMs à l'ordre trois	64
	4.5. 4.6.		65 66
	7.0.	CONCIDENTIA	

Chapitre 5	: Résultats expérimentaux et comparaison	
5.1	Introduction	67
5.2	Acquisition du signal et constitution du corpus de parole	
5.3	Apprentissage et reconnaissance	67
5.4	Résultats expérimentaux	68
5.5	Commentaire	71
Conclusion	n générale	73
Bibliograp	hie	75

Résumé

La contribution de de travail porte sur l'application des modèles de Markov cachés à la reconnaissance automatique de la parole.

Après présentation du modèle de Markov caché d'ordre un, et de son concept de base, ce mémoire comporte, une classification des phonèmes arabes, une présentation des différentes méthodes d'analyse du signal de parole, ainsi que l'application des chaînes de Markov cachées à la reconnaissance de la parole (apprentissage, reconnaissance) mots isolés, enchaînés et parole continue, tout en présentant les modèles de Markov cachés (HMM) non classiques, c'est à dire avec modélisation de la durée et les modèles de Markov en construction par niveau.

Ensuite, on présente le modèle de Markov caché d'ordre deux, son équivalent d'ordre un, enfin une extension de ce modèle à l'ordre trois.

Les résultats obtenus après comparaison expérimentale entre le modèle d'ordre un et le modèle d'ordre deux sont affichés avec commentaire. A travers les résultats d'un système de reconnaissance de mots isolés, nous avons pu voir l'utilité du passage au deuxième ordre.

Mots clés :

Modèles de Markov cachés (HMM), reconnaissance automatique de la parole, traitement du signal, Analyse spectrale.