REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE D'ORAN-Mohamed Boudiaf

Faculté des sciences

Département de Mathématiques

MEMOIRE Présenté en vue de l'obtention du DIPLOME DE MAGISTER

Spécialité: Mathématiques appliquées

Option: Géométrie différentielle

Présenté par

BOUHARIS Amel

Sujet du mémoire

GEOMETRIE SPECTRALE RIEMANNIENNE ASSOCIEE A L'OPERATEUR LAPLACIEN SUR UNE VARIETE DE HEISENBERG.

Présenté le :

devant le jury composé de :

P ^r MESSIRDI. B	Professeur (Université D'ORAN ES-SENIA)	PRESIDENT
D ^r RAHMANI. S	Maître de conférences en Mathématiques (USTO)	RAPPORTEUR
D ^r RAHMANI. N	Maître de conférences en Mathématiques (USTO)	EXAMINATEUR
D ^r DJAA. M	Maître de conférences en Mathématiques (U.SAIDA)	EXAMINATEUR

Contents

I ri	Géométrie de l'opérateur Laplacien sur une variété emannienne compacte	; 5
1	Etude de l'opérateur Laplacien sur une variété riemannienne	,
	compacte.	ţ
	1.1 Préliminaires	į
	1.1.1 L'isomorphisme canonique : Dièse (noté#)	ţ
	1.1.2 Isomorphisme canonique : bémol (noté b)	•
	1.1.3 L'étude de l'opérateur Gradient sur une variété riemannienne.	
	1.1.4 L'étude de l'opérateur Divergence sur une variété rieman-	
	nienne:	7
	1.1.5 Ecriture en coodonnées locales du laplacien sur une variété	
	riemannienne	ç
2	L'invariance du Laplacien par isometrie.	12
	2.1 Théorème	12
IJ L	Etude de l'opérateur Laplacien sur les groupes de ie munis de métriques riemanniennes invariantes à gauc	
4	Expression locale de l'opérateur Laplacien \triangle sur un groupe de	
	$\operatorname{Lie} G$.	18
	4.1 Théorème d'URAKAWA	18
	4.2 Corollaire:	20
5	Exemple .	20
II l'o	I Application - Détermination pratique du spectre de opérateur Laplacien sur un tore riemannien plat .	21
6	Généralités sur les representations linéaires des groupes	21
	6.1 Définition d'une représentation linéaire d'un groupe	21
	6.1.1 Proposition	22
	6.1.9 Définitions Remarques	99

	6.2	Lemme de SCHUR	24
		6.2.1 Enoncé du lemme de SCHUR	24
		6.2.2 Conséquences du lemme de SCHUR	25
		6.2.3 Cas des representations unitaires continues	25
7	Etu	de des représentations unitaires des groupes abéliens	2 5
	7.1	Caractères d'une représentation	26
8	Eno	oncé simplifié du théorème de Peter Weil	27
9	~ ~	olication au Calcul du spectre du Laplacien sur les tores nensionnels plats.	- 27
N	/ I	Propriétés de l'opérateur Laplacien Δ sur les sur-	-
fa	ces	à courbure nulle .	2 9
1 0	Intr	${f coduction}$ à l'étude des tores $n{ m -dimensionnels}$.	29
	10.1	Sous groupes discrets uniformes de \mathbb{R}^n	29
		10.1.1 Définition	29
		10.1.2 Commentaires	29
	10.2	Notion d'un C^k -revêtement	-30
		10.2.1 Définition d'un C^k -revêtement	30
		10.2.2 Théorème	30
	10.3	Notion d'un C^k -revêtement riemannien	32
		10.3.1 Définition	32
		10.3.2 Théorème	32
		10.3.3 Proposition	32
	10.4	Classification des réseaux de R^2	34
		10.4.1 Définition	34
		10.4.2 Classification des réseaux de \mathbb{R}^2	35
		10.4.3 Réseaux isométriques de \mathbb{R}^2	36
	10.5	L'isométrie des tores plats à deux dimensions	36
	10.0	10.5.1 Lemme:	36
		10.5.2 Proposition	36
		10.5.2 Proposition	.)(.
11		néralisation au cas des surfaces riemanniennes.	39
		Proposition	39
		L'isospectralité des bouteilles de Klein	39
		Proposition	39
		L'isospectralité des variétés de dimension 1	40
	11.5	Proposition	-Af

V Présentation du groupe de Heisenberg H_{2p+1} - Classification des sous groupes discrets uniformes de H_{2p+1} .	
12 Rappel sur les variétés de Heisenberg.	41
13 Présentation du groupe de Heisenberg . 13.1 Classification des sous groupes discrets uniformes de H_{2p+1} 13.1.1 Sous groupes discrets uniformes de H_{2p+1} 13.1.2 Cas particulier des variétés de Heisenberg de dimension 3 .	41 42 42 44
14 Métriques invariantes à gauche sur le groupe de Heisenberg. 14.1 Les champs de vecteurs invariants à gauche :	44 44 46
 15 La determination des champs de Killing sur le groupe de Heisenberg. 15.1 Définition d'un champ de Killing sur une variété riemannienne. 15.2 La caractérisation des champs de Killing sur le groupe de Heisenberg de dimension 3 	47 47 48
VI Propriétés de l'opérateur Laplacien sur les espaces fibrés principaux à fibres totalement géodèsiques .	51
16 Rappel sur les variétés fibrées principales. 16.1 Groupes de transformation de Lie	5 1 51 52
17 Etude du spectre de la variété de Heisenberg de dimension 3 . 17.1 Rappels	57 57 57 57
VII Mise en évidence d'exemples de variétés riemanni- ennes où l'isospectralité au sens de l'opérateur Laplacien entraine leur isométrie au sens de la métrique riemanni- enne sous-jacente.	l
18 Préliminaires . 18.1 Proposition	59 59 59

19 Résultat principal.	62
19.1 Enoncé du théorème principal	62
19.2 Preuve du théorème	63
19.3 Remarque	65
VIII Annexes de résultats techniques.	66
20 Annexe 1 -Théorème concernant la racine d'une matrice carrée.	67
21 Annexe 2- Lemme.	69
22 Annexe 3 - Calcul de la courbure scalaire sur la variété de Heisenberg de dimension 3.	70
22.1 Tenseur de Courbure et courbure scalaire sur une variété rieman-	
nienne	70
22.2 Courbure de Ricci-Courbure scalaire sur un espace euclidien 22.3 Calcul de la courbure scalaire sur la variété de Heisenberg de dimension 3	71 72
	12
23 Annexe 4 - Rappels concernant la seconde forme fondamentale .	? 74
24 Annexe 5 .Notion de mesure sur une variété riemannienne.	75
24.1 Notion de mesure sur un espace topologique localement compact .	75
24.1.1 Définition d'un espace de Riesz	75
24.2 Notion de mesure sur les variétés différentiables	76 77
25 Annexe 6 - Deuxième présentation des connexions Linéaires	78
25.1 Application à l'opérateur divergence :	78
25.2 Divergence d'un champ de tenseur :	79
26 Annexe7-Le développement asymptotique de Minakshisundaram	
- Pleijel .	79
26.1 Rappel	79