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This thesis focuses particularly on the application of chemometrics in the field of 
analytical chemistry. Chemometrics (or multivariate analysi s) consists in find ing il 

relationship between two groups of variables, often caHed dependent and independellt 
variables. In inrrared spectroscopy for instance, chemometrics consi5ts in the predictIOn 
of a quantitative variable (the obtention of which is delicate, requiring a chemical 
analysis and a Qualified operator). such as the concentration of a component present 
in the studied product from spectral data measured on va ri ous wavelengths or 
wavenumbers (several hundreds, even severa l thousands ). In thi s research we propose 
a methodology in the field of chemometrics to handle the spectrophotometri c data 
which are often represented in hig h di mension. Ta handle these data , we first propose 
a new incremental method (step-by-step) fo r the selectio nof spectra l data usi ng linear 
and no n- li near regression based on the combination of three princi ples: lin ea ror non
linear regression, incremental procedure fo r the va ria ble selection, and use of a validation 
set. This procedure allows on one hand to benefit From the advantages of non -li near 
methods to predict chemical data (there is often a non-linear re lalions hip between 
dependent and independent varia bles), and on the other hand to avoid the overfitting 
phenomenon, one of the most crucial problems encountered with non-linear models. 
Secondly, we propose to im prove the previous rnethod by a judicious choice of the first 
selected variable, which has a ve ry important influence on the final performances of the 
prediction. The idea is ta use a measure of the mutual information between the 
independent and dependent variables to select the tirst one; then the previous incremental 
method (step-by-step) is used to select the next va riab les. The variable se lected by 
mutual information can have a good interpretation from the spectrochemica l point of 
view, and does not depend on the data distri bution in the training and va lidation sets. 
On the contrary. the traditional chemometric linear methods such as PCR or PlSR produce 
new va riables which 00 not have an obvious interpretation from the spectrochemical point 
ofview. Four rea l-life datasets (wine, orange juice. milk powder and apples) are presente<! 
in arder to show the efficiency and advantages of both proposed procedures compared 
ta the trad itional chemometric linea r methods often used. such as MLR. PCR and PlSR. 


