REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE HADJ LAKHDAR BATNA (ALGERIE)

MEMOIRE

Présenté à la faculté des Sciences Département de Mathématiques Pour l'obtention du diplôme de

MAGISTER

Option: Analyse Mathématiques Appliquée

Par

Gasmi Bouthaina

THEME

CONTRIBUTION A L'ETUDE DES METHODES DE RESOLUTION DES PROBLEMES D'OPTIMISATION QUADRATIQUES

Soutenue le :12/02/2007

Devant le jury

Mr.B.MEZERDI	Prof.	Université de Biskra	Président
Mr.R.BENACER	Prof.	Université de Batna	Rapporteur
Mr.S.E.REBIAI	Prof.	Université de Batna	Examinateu
Mr.K.MESSAOUDI	Prof.	Université de Batna	Examinateur

Table des matières

Introduction générale.

CHAPİTRE 1 : Eléments d'analyse convexe, conditions d'optimalitées.

Introduction

- 1.1 Les ensembles convexes.
- **1.2** Les fonctions convexes.
- 1.3 Les cônes.
- 1.4 Les conditions d'optimalitées.
 - 1.4.1 Les conditions nécessaires d'optimalités d'ordre un.
 - 1.4.2 Les conditions nécessaires d'optimalités d'ordre deux.

CHAPİTRE 2: La programmation DC, la méthode DCA.

Introduction

- **2.1** La programmation DC.
 - **2.1.1** Les fonctions DC.
 - 2.1.2 Dualité en optimisation DC.
 - 2.1.3 Les conditions d'optimalitées en optimisation DC.
- **2.2** La méthode DCA.
 - 2.2.1 Description de la méthode.
 - 2.2.2 L'existence et bornitude des suites générées par DCA.
 - 2.2.3 Comment redémarrer le DCA.
 - 2.2.4 L'application de la méthode pour les problèmes quadratiques.

CHAPİTRE 3 : La méthode de la transformation duale canonique (TDC).

Introduction

- 3.1 La transformation duale canonique dans le cas général.
 - **3.1.1** L'idée fondamentale de la méthode.
 - **3.1.2** Description de la méthode.
 - **3.1.3** Exemple.
- 3.2 L'application de la méthode pour les problèmes quadratiques.
 - **3.2.1** La structure de l'opérateur $\Lambda(x)$ pour ce type des problèmes.
 - **3.2.2** La structure de la fonction $\overline{W}(y)$.

- **3.2.3** La structure de $\overline{W}^{\#}(.)$.
- **3.2.4** La structure de $\overline{F}^{\wedge}(y^*)$.
- **3.2.5** La structure de la fonction dual canonique $f^{d}(y^{*})$.
- 3.3 Les condition extrêmes des points de KKT.
- **3.4** Exemples.

CHAPİTRE 4: Méthode de Séparation et Interpolation.

Introduction

- **4.1** Description de la méthode.
 - **4.1.1** La transformation de la forme quadratique avec l'utilisation de sa structure propre.
 - **4.1.2** L'approximation linéaire et l'erreur limites.
- **4.2** La solution garantie de ε -approximation.
- **4.3** L'algorithme.
 - **4.3.1** La procédure de Branch and Bound.
- **4.4** Exemple.

CHAPİTRE 5 : Méthode de Séparation et Évaluation (Branch and Bound).

Introduction

- **5.1** Description de la méthode.
 - **5.1.1** Bornitude de la fonction objectif sur un rectangle.
 - **5.1.2** La relation effective entre la fonction objective et leur borne inférieur.
 - **5.1.3** Construction du problème linéaire (LBP).
- **5.2** Les techniques de partition et réduction sur un rectangle.
 - **5.2.1** Méthode de partition.
 - **5.2.2** Description de techniques de réduction sur un rectangle.
- **5.3** L'Algorithme rectangulaire de Séparation et Réduction.
- **5.4** La convergence de l'algorithme proposée.
- **5.5** Les subdivisions rectangulaires normaux.
- **5.6** Exemple.

ANNEXE:

 $\textbf{Annexe I:} \ \textit{Application particulière de la méthode de la transformation duale } canonique.$

Annexe II : Preuve de lemme 3.4.

 ${\bf Conclusion.}$

Résumé:

Ce travail est principalement consacré à l'association des méthodes de recherche globale pour résoudre les problèmes d'optimisation quadratiques en général non convexes.

Nous avons utilisées quatre méthodes différentes :

- 1. L'Algorithme DC (différence de deux fonctions convexes).
- 2. La méthode de la transformation duale canonique (TDC).
- 3. La méthode de la Séparation et interpolation.
- 4. méthode de séparation et évaluation qui' est appelée aussi Branch and Bound.

Mots clés:

Programmation DC, Optimisation globale, Programmation quadratique non convexe, Méthodes de Branch and bound, Tactique de réduction rectangulaire.

Abstract:

This work is mainly devoted to global research method four the quadratic optimization problems.

We are chose for different methods witch are:

- 1. The DC Algorithm (different of tow convex function).
- 2. The canonical dual transformation method (CDT).
- 3. The Branch and Bound method.
- 4. The new Branch and Reduce method.

Key words:

DC-programming, Global optimization, Non convex quadratic programming, Branch and bound method, Rectangle reducing tactics.