République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Hadj Lakhdar-Batna

Faculté des sciences Département de Mathématiques

Mémoire

Présentée pour l'obtention du diplôme de

Magister (École doctorale)

Option: Mathématiques

Thème

Comportement Asymptotique Singulier des Equations de Stokes Couplées

Par:

MEKSEH NEDJMA

Devant le jury :

Youkana Amar	M.C.A	Univ. De Batna	Président
Bentalha Fadila	M.C.A	Univ. de Batna	Rapporteur
Aibeche Aissa	Pr.	Univ. de Sétif	Examinateur
Mokrane Ahmed Zerrouk	M.C.A	Univ. de Batna	Examinateurs

Table des matières

0.1	Introduction	5
	U.I.I Description du memoire	Ü
I Ra	appels et notations	7
0.2	Convergence faible dans un espace de Banach	9
0.3	Distributions	.0
0.4	Les espases L^p	1
	0.4.1 Définitions	1
	0.4.2 Convergence faible dans L^p pour $1 $	1
0.5	Espace de Hilbert et théorème de Lax Milgram	2
0.6	Espaces de sobolevs	2
		2
		.3
0.7	Notations utilisées	4
	Description de la géométrie	7 .7 .8 21
III (contrá	Outils spécifiques de la méthode de la zone de ôle 2	3
0.12	Notations	25
0.13	Inégalités de bases et opérateurs localisants	25
0.14	Problème local et fonction clé	29
\mathbf{tions}	Comportement asymptotique de (F_{ε}) et estima- à priori	
0.15	Comportement asymptotique de (F_{ε})	5
	Estimations à priori	
0.17	Comportement limite de (u^{ε}) dans le cas (γ^{-1}) bornée 3	39

\mathbf{V}	\mathbf{P}	roblème limite dans le cas $r_{arepsilon}=O_{}\left(arepsilon^{3} ight)$	43
		Fonction test	45
		Passage à la limite	
		Problème limite et effets non locaux	
\mathbf{V}	I F	Problème limite dans le cas $\varepsilon^3 \ll r_\varepsilon \ll \varepsilon$	53
		Fonction test	55
	0.22	Passage à la limite	56
		Problème limite	
\mathbf{v}	П	Problème limite dans le cas $r_{\varepsilon} \ll \varepsilon^3 \ll \varepsilon$	57
٠.		Comportement asymptotique de (H_{ε})	
		Estimations à priori	
		Fonction test	
		Passage à la limite	
		Problème limite	
\mathbf{A}			63
	A.1	Preuve du lemme 5	63
	A.2	Preuve du lemme 6	65
	Con	clusion et perspectives	
	bibl	iographie	

Résumé

On étudie en homogénéisation le comportement asymptotique d'un milieu bi phasiques constitué d'une phase ambiante connexe non fluide, et d'une phase fluide en suspension dans la première, formée de petites particules sphérique ϵ -périodique. En supposons que le volume globale de la suspension converge vers zéro, et en imposant des conditions particulières sur le gradient de la vitesse à l'interface fluide-phase ambiante, on détermine la distribution de la concentration quand ϵ tend vers 0 pour les deux phases. Suivant la valeur d'un certain coefficient de raréfaction, trois cas se distinguent. Lorsque ce dernier est positif et fini, le système macroscopique engendré est un système à deux concentrations couplées par l'intermédiaire d'un terme témoignant d'effets non locaux. Dans les deux autres cas où le coefficient de raréfaction est infini ou tendant vers zéro, un résiduel effet témoigne de la présence des particules malgré la simplicité de la forme des deux systèmes.

Abstract

We study the homogenization of a binary structure formed by an ambiental connected non fluid phase, surrounding a suspension of very small spheric fluid particles, distributed in an ϵ -periodic network. The asymptotic distribution of the concentration is determined for both phases, as $\epsilon \rightarrow 0$, assuming that the suspension has a vanishing volume and some conditions on the velocity at the interface fluid-, ambiental phase. Three cases are distinguished according to the values of a certain rarefaction number. When it is positive and finite, the macroscopic system involves a two-concentration system, coupled through a term accounting for the non local effects. In the other two cases, where the rarefaction number is either infinite or going to zero, although the form of the system is much simpler, some peculiar effects still account for the presence of the suspension.

ملخص

نهتم بمجانسة الأوساط ثنائية الدور المؤلفة من طور حيوي مترابط و طور معلق في الطور الأول، مشكل من حبيبات صغيرة موزعة على رؤوس الشبكة الدورية يتميز التصرف التقريبي لمثل هذا المزيج بوجود حدود إضافية عند المرور بالنهاية تعرف حسب الحالة الغير محلية نستعمل طريقة جديدة معتمدة على إدخال منطقة مراقبة تسمح بمجانسة بنية جزئية دقيقة