REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DE BATNA

FACULTE DE TECHNOLOGIE DEPARTEMENT D'ELECTROTECHNIQUE

THESE DE DOCTORAT EN SCIENCES

Présentée pour obtenir

LE TITRE DE DOCTEUR EN ELECTROTECHNIQUE

(Décret exécutif n⁰98-254 du 17 Août 1998)

Par

Ali REZIG

(Magistère en Electrotechnique option : Modélisation des réseaux électriques)

ANALYSE TRIDIMENSIONNELLE DES PHENOMENES VIBRATOIRES DANS LES MACHINES ELECTRIQUES

Soutenue publiquement à Batna le : 05 Mai 2011

Devant le jury:

Mr. B. AZOUI	Professeur	U. Batna	Président
Mr. M. R. MEKIDECHE	Professeur	U. Jijel	Rapporteur
Mr. A. GUETTAFI	Professeur	U. Batna	Examinateur
Mr. M. CHAABANE	Professeur	U. Batna	Examinateur
Mr. A. DJERDIR	Maître de Conférences HDR	UTBM (France)	Examinateur
Mr. A. TIBOUCHE	Maître de Conférences	U. Jijel	Examinateur

INTRODUCTION GENERALE		
1- Définition et Etude des Grandeurs Vibro-acoustiques	6	
1-1 Vibration, son et bruit	6	
1-2 Etude des vibrations	7	
1-3 Etude du bruit	7	
2- Processus de la Génération des Vibrations et du Bruit dans les Machines Electriques	7	
3- Sources de Vibrations dans une Machine Electrique	9	
3-1 Vibrations d'origine aérodynamique	10	
3-2 Vibrations d'origine mécanique	11	
3-3 Vibration d'origine électromagnétique	14	
3-3-1 Forces de Maxwell	15	
3-3-2 Forces de Laplace	19	
3-3-3 Forces magnétostrictives	19	
4- Vibrations et Bruit dus aux Ondes de Force Magnétique Radiale	21	
4-1 Génération des ondes de forces radiales	21	
4-2 Résonance mécanique des tôles et émission du bruit	22	
4-3 Modes de forces et de vibrations naturelles du stator	22	
4-4 Amplification des vibrations par la résonance	24	
4-5 Rayonnement du bruit	26	
4-6 Concept de la psycho acoustique	27	
5-Défauts et Comportement Vibroacoustique des Machines Electriques	29	
6-Réduction de Vibrations et Bruit Acoustique	31	
6-1 Réduction du bruit d'origine électromagnétique	31	
6-2 Réduction du bruit d'origine mécanique	31	
6-3 Réduction du bruit d'origine aérodynamique	31	
7- Mesure de Vibration et Bruit Acoustique		
8- Vibrations et Bruit dus à la Force Magnétique Tangentielle (Ondulations du Couple)	33	
8-1 Couple de détente	33	

8-2 Paramètres influençant le couple de détente	34
CONCLUSION	34
Chapitre 2 : Modèles Electromagnétiques des Machines Electric	ques en Vue
d'une Etude Vibro- Acoustique	
INTRODUCTION	37
1- Modèle Electromagnétique de la Machine Asynchrone	38
1- 1 Expression analytique de la perméance	39
1-2 Force magnétomotrice du stator	42
1-3 Force magnétomotrice du rotor	44
1-4 Effet d'un défaut d'excentricité sur la distribution du l'induction magnét	ique
de l'entrefer	50
2- Modèle Electromagnétique de la Machine Synchrone à Aimants Permanent 2-1 Induction magnétique produite par le rotor à aimants dans l'é	
MSAP	55
2-2Induction magnétique produite par les	enroulements
statoriques	59
2-3 Expression de la perméance de l'entrefer	60
2-4 Impact des défauts sur la distribution de l'induction magnétique dans l	'entrefer d'une
MSAP	62
2-4-1 Défaut de désaimantation	63
CONCLUSION	64
Chapitre 3 : Modèles Mécaniques et Acoustiques des Ma	cnines
Electriques	
INTRODUCTION	67
1- Modèle Mécanique	
1-1 Vibrations forcées du stator	
1-2 Fréquences Propres de la Structure Mécanique	
1-2-1 Calcul simplifié des fréquences propres	
1-2-3 Validation par calcul numérique 2D des fréquences propres	

1-2-4 Effet de la carcasse	73
1-2-5 Calcul amélioré des fréquences propres	74
1-2-5-1 Fréquences propres du noyau	75
1-2-5-2 Fréquences propres de la carcasse	75
1-2-5-3 Fréquences propres du système noyau-carcasse	77
1-2-5-4 Effet du bobinage et des dents du stator	77
2- Modèle Acoustique	80
2-1 Puissance acoustique rayonnée par une machine électrique	
2-2 Amélioration du modèle cylindrique fini	81
2-2-1 Distribution de la pression acoustique autour de la machine	81
2-2-2 Calcul de la puissance acoustique rayonnée	
2-3 Effet des vibrations axiales sur les vibrations radiales	
2-4 Modèle sphérique amélioré	
2-5 Spectre du bruit et bruit total rayonné par la machine	
CONCLUSION	
Chapitre 4 : Applications à l'Etude et l'Analyse Vibro-Acoustiq Machines Electriques en Présence des Défauts	ue ues
INTRODUCTION	91
1- Résumé du Modèle Analytique	92
2- Application pour la Machine Asynchrone	
2-1 Caractéristiques dimensionnelles de la machine utilisée et calcul des	
électromagnétiquesélectromagnétiques	
•	grandeurs
2-2 Ondes de forces magnétiques radiales en présence de l'excentricité	grandeurs
2-2 Ondes de forces magnétiques radiales en présence de l'excentricité2-3 Bruit rayonné par la surface externe de la machine avec et sans excentricit	grandeurs 92 96
2-3 Bruit rayonné par la surface externe de la machine avec et sans excentricit	grandeurs 92 96 é101
2-3 Bruit rayonné par la surface externe de la machine avec et sans excentricité 3- Application pour la Machine Synchrone à Aimants Permanents	grandeurs 92 96 é101
2-3 Bruit rayonné par la surface externe de la machine avec et sans excentricit	grandeurs 92 96 é101 104

Chapitre 5 : Investigations et Validations Expérimentales

INTRODUCTION	113
1-Présentation du Banc de Mesure Développé	113
1-1Composants électromagnétiques	113
1-1-1 Machine en test	113
1-1-2 Capteur de Position	113
1-2 Composants électroniques	114
1-2-1 Onduleur	115
1-2-2 Système de contrôle en temps réel DSPACE	115
2- Principe de Fonctionnement de Résolveur	117
2-1 Convertisseur analogique/numérique (CAN)	118
2-1-1 CAN par circuit intégré	118
2-1-2 CAN logiciel	119
3- Contrôle et Mise en Marche de la MSAP	120
4-Mesure des Vibrations et Validation du Modèle Analytique	124
5- Test de l'excentricité	125
CONCLUSION	129
CONCLUSION GENERALE	131
REFERENCES BIBLIOGRAPHIQUES	
ANNEXES	141
ANNEXE A: Matrice M_w représentant l'enroulement du stator pour le cabbinage	
ANNEXE B : Détermination des coefficients d'intégrations issues de la résol Maxwell dans les différentes parties de la MSAP	-
ANNEXE C : Paramètres géométriques et physiques des machines utilisée	es dans le calcul des
fréquences propres (chapitre 3)	144
ANNEXE D : Fonctions intervenant dans la résolution de l'équation de la pres	sion acoustique autour
de la machine	145

ANNEXE E : Ondes de Forces dans la machine synchrone à aimants permanents147
ANNEXE F : Paramètres géométriques et physiques de la MSAP utilisée dans les tests et de son
<i>résolveur</i>
ANNEXE G : Caractéristiques de la carte NI 9234 pour l'acquisition des vibrations149

Résumé:

Ce travail de thèse est une contribution à l'étude et l'analyse des phénomènes vibro-acoustiques dans les machines électriques. Le modèle analytique développé permet la prédiction du bruit d'origine magnétique rayonné par la machine électrique dans le cas sain et en présence des défauts. Il est constitué de trois parties : un modèle électromagnétique de la force excitatrice, un modèle vibratoire pour calculer les déplacements de la surface externe de la machine, et enfin un modèle acoustique pour déterminer la puissance acoustique. La force magnétique excitatrice dépend du carré de l'induction magnétique dans l'entrefer et les modes de vibrations qui excitent la structure mécanique dépendent du contenu harmonique de cette dernière grandeur, donc toute perturbation géométrique ou magnétique conduit à la modification de ce contenu harmonique et par conséquence à l'apparition de d'autres modes de vibrations qui peuvent êtres dangereux de point de vue vibro-acoustique. Parmi les phénomènes qui conduisent à ces perturbations, nous avons traités le cas de l'excentricité du rotor et celui de la désaimantation des aimants dans les machines à aimants permanents. Pour valider ce modèle concernant l'effet de l'excentricité du rotor, une maquette expérimentale a été mise en place.

Mot-clés : vibrations, bruit, induction magnétique, force magnétique, rayonnement acoustique, excentricité, désaimantation, spectre du bruit. Fréquences naturelles.

Abstract:

Three-dimensional Analysis of Noise and Vibration Phenomena in Electrical Machines

This thesis is a contribution to the study and analysis of vibro-acoustic phenomena in electric machines. The developed analytical model allows the prediction of magnetic noise radiated by the electrical machine if healthy and faulty case. It consists of three parts: an electromagnetic model of the excitation force, a model for calculating vibration displacement of the outer surface of the machine, and finally an acoustic model to determine the acoustic power radiated by the machine. The magnetic excitation force depends on the square of magnetic induction in the air gap and the vibration modes that excite the mechanical structure depend on the harmonic content of that magnitude, so any geometric or magnetic disturbance led to the modification of the harmonic content and consequently the emergence of other modes of vibration which can be dangerous from vibroacoustic point of view. Among the phenomena that lead to these disturbances, we have treated the case of the eccentricity of the rotor and the demagnetization of magnets in permanent magnet machines. To validate this model on the effect of the eccentricity of the rotor, an experimental model was established.

Key-words: vibrations, noise, magnetic flux density, acoustic radiation, eccentricity, demagnetization, noise spectrum, natural frequency.

ملخص:

تحليل ثلاثسي الأبعساد لظواهسر الضبجيج والإهستزازات فسي الماكنسات الكهربائيسة

العمل المقدم في هذه الأطروحة هو مساهمة في دراسة وتحليل الظواهر الإهتزازية الصوتية في الماكنات الكهربائية. النمودج التحليلي المطور يسمح بالحساب المبكر للضجيج المنبعث من الماكنات الكهربائية في الحالة الطبيعية وفي حالة إحتوائها على أخطاء. يتكون النمودج التحليلي المطور من ثلاثة أجزاء: جزء كهرومغنطيسي لحساب القوة المغذية، جزء ميكانيكي لحساب إهتزازات الغلاف الخارجي للماكنة. وجزء أخير لحساب الطاقة الصوتية المنبعثة من الماكنة.

القوة المغنية تتعلق بالحث المغنطيسي في الفجوة الهوائية وأنماط الإهتزاز تتعلق بالتركيبة التوافقية لهذا المقدار المغنطيسي. كل تذبذب في هذه التركيبة يقود إلى ظهور أنماط إهتزاز جديدة قد تكون خطيرة من وجهة نظر إهتزازية وصوتية. من بين الظواهر التي تقود إلى هذا الوضع، درسنا حالة لا مركزية الدوار وحالة فقدان المغنطة في الماكنات ذات المغانط الدائمة. للتأكد من صحة النمودج التحليلي المطور فيما يخص لا مركزية الدوار قمنا بتصميم نموذج تجريبي.

المفاتيح: إهتزازات،الضجيج، الحث المغنطيسي، الإنبعاث الصوتي، لامركزية، فقدان المغنطة، طيف الضجيج، الترددات الطبيعية.