img

تفاصيل البطاقة الفهرسية

RF-Identity

Non-Intrusive Person Identification Based on Commodity RFID Devices

مقال من تأليف: Chang, Liqiong ; Xiong, Jie ; Wang, Ju ; Wang*, Fuwei ; Fang, Dingyi ; Feng, Chao ;

ملخص: Person identification plays a critical role in a large range of applications. Recently, RF based person identification becomes a hot research topic due to the contact-free nature of RF sensing that is particularly appealing in current COVID-19 pandemic. However, existing systems still have multiple limitations: i) heavily rely on the gait patterns of users for identification; ii) require a large amount of data to train the model and also extensive retraining for new users and iii) require a large frequency bandwidth which is not available on most commodity RF devices for static person identification. This paper proposes RF-Identity, an RFID-based identification system to address the above limitations and the contribution is threefold. First, by integrating walking pattern features with unique body shape features (e.g., height), RF-Identity achieves a high accuracy in person identification. Second, RF-Identity develops a data augmentation scheme to expand the size of the training data set, thus reducing the human effort in data collection. Third, RF-Identity utilizes the tag diversity in spatial domain to identify static users without a need of large frequency bandwidth. Extensive experiments show an identification accuracy of 94.2% and 95.9% for 50 dynamic and static users, respectively.


لغة: إنجليزية
الفهرس العشري 621 .الفيزياء التطبيقية (الهندسة الكهربائية ، الهندسة المدنية ، الهندسة الميكانيكية ، الهندسة التطبيقية ، المبادئ الفيزيائية في الهندسة)
الموضوع الإعلام الآلي

الكلمات الدالة:
Person identification
Deep learning
RFID tag
Body feature

RF-Identity

الفهرس